
Almost sure 
onvergen
e of weighted partial sumsTAM�AS F. M�ORI (Budapest) and BAL�AZS SZ�EKELY (Budapest)Abstra
tIn the paper suÆ
ient 
onditions of 
ovarian
e type are presented for weighted averages ofrandom variables with arbitrary dependen
e stru
ture to 
onverge to 0, both for logarithmi
 andgeneral weighting. As an appli
ation, an a.s. lo
al limit theorem of Cs�aki, F�oldes and R�ev�esz isrevisited and slightly improved.1 Introdu
tionIn the last de
ade many interesting extensions of 
lassi
al limit theorems have been obtained as
ontributions to the so-
alled almost sure 
entral limit theory. The �rst basi
 results were dis
overedindependently by Brosamler [2℄ and S
hatte [6℄, and slightly later by La
ey and Philipp [4℄.Theorem A. (Brosamler, S
hatte, La
ey, Philipp) Let X1;X2; : : : be i.i.d. random variables withEX1 = 0; EX21 = 1 and set Sn = X1 + � � �+Xn. Thenlimn!1 1logn nXk=1 1k In Skpk � xo = �(x) a:s:(1)for every real x, where �(x) is the standard normal distribution fun
tion, and If�g stands for theindi
ator of the event in 
urly bra
kets.This result has been extended and generalized in several ways. In their 1991 paper [1℄ Berkesand Dehling provide a systemati
 study of logarithmi
 analogues of 
lassi
al limit theorems. Theyalso present an e�e
tive method whi
h 
an be applied to all similar problems. It is based on theobservation that, under very mild 
onditions, the a.s. limit behaviour of the sequen
es1log n nXi=1 1i InSi � biai < xo and 1log n nXi=1 1i P�Si � biai < x�
oin
ide. More pre
isely, de�ning �i = InSi�biai < xo�P�Si�biai < x� we havelimn!1 1log n nXi=1 1i �i = 0 a:s:(2) Key words and phrases: a.s. 
entral limit theorem, logarithmi
 average, maximal inequality2000 Mathemati
s Subje
t Classi�
ation: 60 F 15 1



M�ori [5℄ found 
onditions that are suÆ
ient for a more general sequen
e f�ig to guarantee (2).The main assumption of this result was the existen
e of a suitable fun
tion h as an upper boundof the 
ovarian
es, in the form of E�i�j � h(j=i), 1 � i � j.More pre
isely, let us de�ne l(x) = log x for e � x and l(x) = 1 for 0 < x � e. Let l1(x) = l(x)and lk(x) = l(lk�1(x)) for k � 2.Theorem B. (M�ori [5℄) Let �1; �2; : : : be arbitrary random variables with �nite varian
es. Supposethere exists a positive non-in
reasing fun
tion h on the positive numbers and a positive integer msu
h that(3) 1Z1 h(z) lm(z)zl(z) dz <1;and for any 1 � i � j(4) E(�i�j) � h�ji� :Then limn!1 1l(n) nXi=1 1i �i = 0 a.s.In the present paper we derive a result of similar kind, but with an h whi
h is not essentiallybounded in the neighborhood of 1 (Theorem 1). This property of h enables us to apply our resultfor proving a.s. lo
al limit theorems. As an example, in Se
tion 4 we revisit a theorem of Cs�aki,F�oldes and R�ev�esz on the limit behaviour of the logarithmi
 averages1log n nXk=1 Ifak � Sk � bkgkP(ak � Sk � bk) ;where bk � ak = o(pk) is allowed. By using Theorem 1 we are able to prove the same result undersomewhat weaker 
onditions.Dealing with logarithmi
 averages one 
an naturally ask what 
ould be said when the weightingis non-logarithmi
; that is, when the asymptoti
 behaviour of the more general weighted averages1B(n) nXi=1 wi�iis 
onsidered, where fwkg is a non-negative weighting sequen
e and B(n) =Pnk=1wk. By applyinga simple transformation we 
an adapt Theorem 1 to this 
ase as well, thus obtaining a fairlygeneral result on the stability of weighted averages of random variables with arbitrary dependen
estru
ture. That kind of problems will be studied in Se
tion 3.2



2 Logarithmi
 weightingDropping the boundedness of se
ond moments we have to add a further 
ondition on the boundingfun
tion h in the neighborhood of 1, and another one that regulates the growth of the se
ondmoments.Theorem 1. Let �1; �2; : : : be arbitrary random variables with �nite varian
es. Suppose there existsa non-in
reasing positive fun
tion h de�ned on (1; 1), su
h that for all 1 � i < j(5) E(�i�j) � h�ji�;Suppose that fun
tion h satis�es(6) 1Z1 h(z) lm(z)zl(z) dz <1 ;for some positive integer m; and(7) 1Z0 h(z + 1)�log 1z�2(1+") dz <1 ;for some " > 0. Finally, suppose that for all 1 � i(8) E(�2i ) � S(i) ;where the sequen
e fSg satis�es 1Xi=1 1i2 S(i) <1 :(9)Then we have limn!1 1l(n) nXi=1 1i �i = 0 a:s:Proof. For the sake of brevity let us introdu
e some notations. Let�(t) = X1�i<t 1i �i;where t is an arbitrary positive number, greater than 1. For positive real numbers 1 � s < t and apositive in
reasing sequen
e fakg we shall adopt the abbreviations�(s; t j fakg) = #fk : s � ak < tg;�(s; t j fakg) = maxs�ak<t j�(ak)� �(s)j :3



We are going to apply the method of subsequen
es in the same way as it was done in the proofof Theorem B in [5℄. We will prove �(n)=l(n) ! 0 along more and more dense subsequen
es ofpositive integers, arriving at N itself in the end.We �rst show that(10) E 1Xk=1 �2(Nk)l2(Nk)! <1for a suÆ
iently sparse subsequen
e fNkg. From this one 
an 
on
lude thatlimk!1 �(Nk)=l(Nk) = 0 a.s.Then the following iterative steps will be 
arried out repeatedly. At ea
h step we 
onsider asubsequen
e fakg of the positive integers, and a sub-subsequen
e fbkg � fakg. We start from thelimit relation limk!1 �(bk)=l(bk) = 0 a.s., and aim at the same with ak in pla
e of bk, by 
he
kingif(11) limk!1��bk; bk+1 �� fang�=l(bk) = 0 a.s.It is 
learly suÆ
ient, sin
e for bk � an < bk+1 we havej�(an)jl(an) � j�(bk)j+ ��bk; bk+1 �� fang�l(bk) :We will prove (11) by showing the �niteness of the expe
tation(12) E 1Xk=1 �2�bk; bk+1 �� fang�l2(bk) ! :At the �rst step bn = Nn is taken. At every subsequent step, for fbng we 
hoose the fang ofthe pre
eding step. We �nally 
omplete the proof by setting fang = N at the last step.In order to show the �niteness of (10) and (12) let us de�ne the fun
tiong(s; t) = 2 Xs�i<j�1<t�1 1ij h�ji�+ 3 Xs�i<t 1i2 S(i):By applying the estimation Ej�i�i+1j � �E�2i E�2i+1�1=2 � 12 �E�2i +E�2i+1� we 
learly haveE(�(t)� �(s))2 = Xs�i<t Xs�j<t 1ij E(�i�j) � g(s; t) :(13)In addition, for any 1 � s < t < u the subadditive propertyg(s; t) + g(t; u) � g(s; u) :4



holds. So we 
an apply Ser
ing's maximal inequality [7℄ to the sequen
e f�i=ig:E�2�s; t j fakg� � 6 l��(s; t j fakg)�2g(s; t):(14)Let us estimate g(s; t). For arbitrary 1 � i < j let Dij denote the parallelogram with verti
es(i; j); (i + 1; j); (i + 1; j + 1); (i + 2; j + 1). Under the assumption of (x; y) 2 Dij ; i 6= j we have1xy h�yx� � 1(i+ 2)(j + 1) h�ji� � 16ij h�ji�;hen
e g(s; t) � Xs�i; i+2�j<t 12 ZDij 1xy h�yx� dxdy + 3 Xs�i<t 1i2S(i)� 12 Zfs�x�y�1<tg 1xy h�yx� dxdy + 3 Xs�i<t 1i2 S(i) :Extending the range of integration, then substituting z = y=x we getZfs�x�y�1<tg 1xy h�yx� dxdy � Zns�x<t; 1� yx<t+1s o 1xy h�yx� dxdy = tZs dxx t+1sZ1 h(z)z dz:The �rst integral on the right-hand side is equal to log(t=s). In the se
ond one one 
an use thatthe integrand is a de
reasing fun
tion of z, hen
et+1sZ1 h(z)z dz � t+ 1t tsZ1 h(z)z dz � 2 tsZ1 h(z)z :From all these one 
an 
on
lude that(15) g(s; t) � 24 log� ts� tsZ1 h(z)z dz + 3 Xs�i<t 1i2 S(i) :Parti
ularly, from (13), (15), and assumption (9) it follows thatE 1Xk=1 �2(Nk)l2(Nk)! � 1Xk=1 g(1; Nk)l2(Nk)� C 1Xk=1 1l(Nk) NkZ1 h(z)z dz + C 1Xk=1 1l2(Nk) X1�i<Nk+1 1i2 S(i)� C 1Z1 h(z)z �XNk>z 1l(Nk)�dz + C 1Xk=1 1l2(Nk) :(16)
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if Nk ! 1. Here and in the sequel C always stands for a suitable positive 
onstant that may
hange at every appearan
e.Let us turn to the estimation of (12). Let us brie
y denote l2��(bk; bk+1 j fakg)�l2(bk) by 
k. Thenby (14), (15) and assumption (9) we get(17) E 1Xk=1 �2�bk; bk+1 �� fang�l2(bk) ! � C 1Xk=1 
k g(bk; bk+1)� C 1Xk=1 
k log�bk+1bk � bk+1bkZ1 h(z)z dz +C 1Xk=1 
k Xbk�i<bk+1 1i2 S(i)� C 1Z1 h(z)z " Xbk+1bk >z 
k log�bk+1bk �# dz +C supk�1 
k :Now we are ready to realize our plan of work. For arbitrary positive integer r let us de�neN (r)k = lexp�exp� kl2r(k)��m. Set Nk = N (m)k . In order to prove (10) we use estimation (16).Routine 
al
ulations show that XN(r)k >z 1l(N (r)k ) � C l2r+2(z)l(z) ;(18)hen
e by (6) the �rst term in the last row of (16) is �nite. On the other hand, the �niteness of these
ond sum is obvious. Thus (10) holds.We 
ontinue the proof with the �rst m� 1 steps. At step i let us 
hoose ak = N (m�i)k and bk =N (m+1�i)k . It is easy to see that with the above de�ned N (r)k the following asymptoti
 statementsare valid.(19) ��N (r)k ; N (r)k+1 �� fN (r�1)n g� � l2r�1(k)l2r(k) ; and l�N (r)k+1N (r)k � � l(N (r)k )l2r(k) :Hen
e at step i = m+ 1� r we have(20) 
k � C l2r(k)l2(N (r)k ) ; and 
k log�bk+1bk � � C 1l(N (r)k ) :Note that 
k is bounded. Furthermore, 
ondition bk+1=bk > z implies that l(N (r)k ) > C l2t (k)l(z)and k > l2(z), therefore N (r)k > exp �C l2r+2(z)l(z)�. Hen
e by (18) and (20) we obtain that(21) Xbk+1bk >z 
k log�bk+1bk � � C l2r+2�l2r+2(z)l(z)�l2r+2(z)l(z) � C 1l(z) :6



This, 
ombined with (6) and (17) proves the �niteness of (12). In the end we 
on
lude that�(N (1)k )=l(N (1)k )! 0.At the next step let bk = N (1)k = �exp�exp�k=l2(k)��� and ak = �exp�exp�k1=3���. Then 
learly��bk; bk+1 �� fang� = O(k2); 
onsequently, (20) is valid with r = 1. Hen
e (21) follows, 
ompletingthe step in the same way as before.Next, let bk = �exp�exp�k1=3��� and ak = �exp(k1+")�, where " is the 
onstant introdu
ed in as-sumption (7). Similarly to the pre
eding steps we obtain that ��bk; bk+1 �� fang� = O�exp� 11+"k1=3��and l( bk+1bk ) � 13k�2=3l(bk). Thus we 
an see again that(22) 
k � C k2=3l2(bk) and 
k log�bk+1bk � � C 1l(bk) :Moreover, if bk+1=bk > z, then l(bk) > C l(z)k2=3 > C l(z)l22(z); and one 
an readily verify thatXl(bk)>z 1l(bk) � C l2(z)z :Hen
e estimation (21) is also valid here:Xbk+1bk >z 
k log�bk+1bk � � C 1l(z) :We 
an �nish the step by plugging ba
k this and (22) into (17).After all these 
al
ulations let bk = �exp(k1+")�, and ak = �exp(log k)2+2"�. Then obviously��bk; bk+1 �� fang� � C exp(pk), log�bk+1=bk� � C k", hen
e 
k � C k�(1+2"), andXbk+1bk >z 
k log�bk+1bk � � C Xk">Cl(z) 1k1+" � C 1l(z) :As before, these are already suÆ
ient to 
omplete the step.Finally, let bk = �exp(log k)2+2"�, and ak = k. Then ��bk; bk+1 �� fang� � C bk, log�bk+1=bk� �2(1 + ")k�1(log k)1+2", hen
e 
k = O(1) (and it is not hard to see that nothing better 
an besaid). This time the last line of (17) 
annot be used, be
ause the in�nite sum of 
k log�bk+1=bk�is divergent. Looking at the middle line we 
an see that the se
ond term is �nite, and in the �rstterm h(z)=z is only integrated in the neighbourhood of 1, thus this is the point where assumption(7) might be of use.Let us denote log�bk+1=bk� by wk, then the sequen
e wk is eventually de
reasing. Sin
e wk �bk+1bk � 1, by the de
reasing property of h we getbk+1bkZ1 h(z)z dz � C wkZ0 h(z + 1) dz :7



Thus the �rst series in the middle line of (17) 
an be treated in the following way.1Xk=1 
k log�bk+1bk � bk+1bkZ1 h(z)z dz � C 1Xk=1wk wkZ0 h(z + 1) dz = C 1Xk=1 wkZwk+1 h(z + 1)� kPi=1wi�dz� C 1Xk=1 wkZwk+1 h(z + 1)(log k)2(1+") dz � C 1Z0 h(z + 1)�log 1z�2(1+") dz <1:by assumption (7). Hen
e expe
tation (12) is �nite, 
onsequently limn!1 �(n)=l(n) = 0 a.s., whi
hwas to be proved.3 General weightingThroughout this se
tion we 
onsider the following model. Let �1; �2; : : : be a sequen
e of arbitraryrandom variables with �nite varian
es, and fwkg an arbitrary sequen
e of positive weights withpartial sums B(n) =Pnk=1wk.In Theorem 2 below we are about to state 
onditions for the weighted sums B(n)�1Pnk=1wk�kto 
onverge to 0, similar to those in Theorem 1.Theorem 2. Suppose that(23) wk � (1� ")B(k); k > 1;for some " > 0, and(24) 1Xk=1 e�mB(k) <1;for some positive integer m. Suppose there exists a non-in
reasing fun
tion h : R+ ! R+ su
h that1Z1 h(z) lm(z)z dz <1;(25) 1Z0 h(z)�log 1z�2(1+") dz <1;(26)and, in addition,(27) E��i�j� � h�B(j)�B(i� 1)�for every 1 � i � j. Then we have(28) limn!1 1B(n) nXk=1wk�k = 0with probability 1. 8



Proof. We begin the proof by separating the summands in (28) into two sums. Introdu
ing thenotations V (n) = 1B(n) nXk=1wkIne�2mB(k) < wko �k ;W (n) = 1B(n) nXk=1wkInwk � e�2mB(k)o �k ;we show that both V (n) and W (n) 
onverge to 0, with probability 1.We �rst investigate the 
onvergen
e of V (n).Let M = 3m=". For eMB(k�1) � i < eMB(k) de�neki = k; e�i = �kIne�2mB(k) < wko ; eS(i) = h(wk)Ine�2mB(k) < wko :Furthermore, let eh(z) = h(M�1 log z). We will apply Theorem 1 to the sequen
e fe�ig. To this endwe 
he
k 
onditions (5){(9).For all 1 � i < j we 
an writeE�e�i e�j� � E ��ki�kj� � h�B(kj)�B(ki � 1)� � eh�ji� ;(29)and for 1 � i we haveE�e�2i � = E�2kiIne�2mB(ki) < wkio � h�B(ki)�B(ki � 1)�Ine�2mB(ki) < wkio= h(wki)Ine�2mB(ki) < wkio = eS(i) :Conditions (6) and (7) of Theorem 1 are ful�lled with eh in pla
e of h. Indeed, by substitutingz =M�1l(x) and using (25) we have1ZeM eh(x) lm+1(x)xl(x) dx = 1ZeM h� log xM � lm(l(x))xl(x) dx = 1Z1 h(z) lm(Mz)z dz <1 ;and from (26), by substituting z =M�1 log(x+ 1) we get1Z0 eh(x+ 1)�log 1x�2(1+") dx � 1Z0 h� log(x+ 1)M ��log 1log(x+ 1)�2(1+") dx� log 2MZ0 h(z)�log 1Mz�2(1+")eMz dz � 2 1Z0 h(z)�log 1z�2(1+") dz <1:
9



Regarding eS we �rst note that B(k � 1) > "B(k) by (23). Hen
e we have1Xi=1 1i2 eS(i) = 1Xi=1 1i2 h(wki)Ine�2mB(ki) < wkio= 1Xk=1� XeMB(k�1)�i<eMB(k) 1i2�Ine�2mB(k) < wkoh(wk)� C 1Xk=1 h(wk)e�MB(k�1)Ine�2mB(k) < wko� C Xwk�1h(wk)e�3mB(k) + C Xwk<1wkh(wk)e�mB(k):Here h(wk) � h(1) if wk � 1, and for wk < 1 we have wkh(wk) � s10 h(z) dz < 1. Thus, by (26)and (24), (9) holds with eS in pla
e of S.Now, by Theorem 1 one obtains that(30) 1MB(n) Xi<eMB(n) 1i e�i ! 0 a.s.Finally, we will prove that the di�eren
e between the left-hand side of (30) and V (n) tends to0 with probability 1. Clearly,(31) ����� XeMB(k�1)�i<eMB(k) 1i � eMB(k)ZeMB(k�1) 1x dx ������ e�MB(k�1) � e�3mB(k)Hen
e we get����� 1M Xi<eMB(n) 1i e�i � nXk=1wkIne�2mB(k) < wko �k �����= 1M ����� nXk=1 Ine�2mB(k) < wko �k� XeMB(k�1)�i<eMB(k) 1i � eMB(k)ZeMB(k�1) 1x dx� ������ 1M 1Xk=1 Ine�2mB(k) < wko j�kje�3mB(k):This series 
onverges with probability 1, be
ause its expe
tation is �nite:1Xk=1Ej�kje�3mB(k)Ine�2mB(k) < wko � 1Xk=1ph(wk) e�3mB(k)Ine�2mB(k) < wko� Xwk�1ph(wk) e�3mB(k) + Xwk<1pwkh(wk) e�2mB(k)� �ph(1) + � 1s0 h(z) dz�1=2� 1Xk=1 e�mB(k) <1:10



Let us turn to W (n). Obviously,(32) E 1Xn=1 max�jW (k)j : 2n � B(k) < 2N+1 	! <1would imply the a.s. 
onvergen
e of W (n) to 0.The left-hand side of (32) 
an be estimated in the following way.E 1Xn=1max�jW (k)j : 2n � B(k) < 2n+1 	!� E 1Xn=1 12n Xk:B(k)<2n+1 Inwk � e�2mB(k)owkj�kj!� 1Xk=1 Inwk � e�2mB(k)owkEj�kj Xn:B(k)�2n+1 12n� C Xwk<1pwkh(wk) e�mB(k) 1B(k) � C 1Xk=1 e�mB(k) <1by (24).Remark 1. Conditions (23) and (24) are obviously satis�ed in the important parti
ular 
ase ofweights wk = k�, � � �1. Though 
ondition (23) would allow weights that grow exponentiallyfast, the real area of appli
ation is the 
ase where the weights are bounded. At the other end,
ondition (24) is hurt if kwk ! 0.Remark 2. Though Theorem 1 itself is not a parti
ular 
ase of Theorem 2, a very similar butslightly weaker result 
an be derived from that; namely, S(i) is supposed to in
rease with i, and
ondition (9) is to be repla
ed by the stronger one1Xi=1 (log i)2(1+")i2 S(i) <1 :4 Appli
ation: an a.s. lo
al limit theoremIn the rest of the paper we revisit and slightly improve an a.s. lo
al limit thoerem due to Cs�aki,F�oldes and R�ev�esz [3℄. Let X1;X2; : : : be i.i.d. random variables with 0 mean and �nite thirdmoment, and let Sn = X1 + � � � + Xn denote their partial sums. Let ak, bk be (extended) realnumbers, �1 � ak � 0 � bk �1. De�ne pk = P(ak � Sk � bk), and�k =8<: Ifak � Sk � bkgpk ; if pk 6= 0,1 if pk = 0, :11



Theorem 3. Suppose(33) Xk: pk 6=0 l22(k)pk k3=2 log k <1holds. Then limn!1 1logn nXk=1 �kk = 1 a.s.Remark 3. In Theorem 2.5 in [3℄ the same 
on
lusion was drawn from a somewhat stronger as-sumption, namely, that(34) X1�k�npk 6=0 log kk3=2pk = O(log n)as n!1. From this latter assumption (33) 
an be derived; moreover, (33) is even implied by thefollowing, similar to (34), but weaker 
ondition.(35) X1�k�npk 6=0 l32(k)k3=2pk = O(log n):Indeed, Xpk 6=0 l22(k)pk k3=2 log k � C Xpk 6=0 l32(k)k3=2pk Xn>k 1n log2 n l22(n)= C 1Xn=1 1n log2 n l22(n) X1�k�npk 6=0 l32(k)k3=2pk � C Xn>1 1n logn l22(n) <1 ;by (35).For the proof we shall need the following lemma, whi
h is just a slightly modi�ed version ofLemma 2.9 in [3℄.Lemma 1. Suppose that bk � ak = O�pk�. Then for all 1 � i < j we havej
ov(�i; �j)j � C  i1=2(j � i)1=2 + 1pj(j � i)1=2!Proof of Theorem 3. Similarly to the proof of Theorem 2.5 in [3℄, we �rst suppose bk � ak � Cpk.We are going to show that limn!1 1l(n) nXk=1 �kk = 012



with probability 1, where �k = �k � 1. To this end, we pro
eed in the same way as in the proofof Theorem 2. We divide the sum into two, a

ording to the size of summands. To the largesummands we apply Theorem 1, while the other part proves to be so small that even a 
onvergentseries with �nite expe
tation 
an be 
omposed from it. Thus, let us de�neT (n) = 1l(n) nXk=1 1k Inpkpk < l22(k)o �k ;U(n) = 1l(n) nXk=1 1k Inpkpk � l22(k)o �k = 1l(n) nXk=1 �0kk :We will show that both sequen
es 
onverge to 0 a.s.We �rst deal with the 
onvergen
e of U(n). So as to apply Theorem 1, we have to �nd anappropriate fun
tion h. By Lemma 1, for 1 � i < j we 
an writeE��0i�0j� = Inpipi � l22(i)o Inpjpj � l22(j)o 
ov(�i; �j)� C Inpipi � l22(i)o Inpjpj � l22(j)o� i1=2(j � i)1=2 + 1pj(j � i)1=2�� C � 1(z � 1)1=2 + z1=2l22(z)(z � 1)1=2�� C � 1l22(z) + 1(z � 1)1=2� =: h(z) ;(36)
where z = j=i. Note that the last line of (36) is already a de
reasing fun
tion of z.Next, we de�ne S(i). By de�nition of �0i we haveE��0i2� = Inpipi � l22(i)oVar(�i) = Inpipi � l22(i)o� 1pi � 1� � i1=2l22(i) =: S(i) :It is not hard to see that these h and S satisfy the 
onditions of Theorem 1. Namely, (6), (7),and (9) are implied by the following estimations, respe
tively.1Z1 h(z) l3(z)zl(z) dz � C 1Z1 l3(z)zl(z)l22(z) dz + C 1Z1 l3(z)zl(z)(z � 1)1=2 dz <1 ;1Z0 h(z + 1)�log 1z�2(1+") dz � C 1=2Z0 1z1=2�log 1z�2(1+") dz <1 ;1Xi=1 1i2 S(i) < 1Xi=1 1i3=2 <1 :By Theorem 1 we �nally obtain that U(n) ! 0 with probability 1 under the assumptionbk � ak � Cpk. 13



Next, we prove that T (n) 
onverges to 0 a.s. We show that the expe
tation(37) E 1Xn=1 maxnjT (k)j : exp (2n) � k < exp �2n+1�o!is �nite. Now, (37) is 
learly less thanE0� 1Xn=1 12n e2n+1Xk=1 1k Inpkpk < l22(k)o j�kj1A :Here Ej�kj � 2, hen
e, by inter
hanging the order of expe
tation we obtain that (37) is majorizedby C 1Xk=1 1k Inpkpk < l22(k)o X2n+1�log k 12n � C 1Xk=1 1k log k Inpkpk < l22(k)o� C Xpk 6=0 l22(k)pk k3=2 log k ;whi
h is �nite by supposition. So we havelimn!1 1l(n) nXk=1 �k � 1k = 0with probability 1, under the 
ondition bk � ak � Cpk. From this point on the proof of Theorem2.5 in [3℄ 
an be repeated to relax the restri
tion on bk � ak.A
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