
Almost sure onvergene of weighted partial sumsTAM�AS F. M�ORI (Budapest) and BAL�AZS SZ�EKELY (Budapest)AbstratIn the paper suÆient onditions of ovariane type are presented for weighted averages ofrandom variables with arbitrary dependene struture to onverge to 0, both for logarithmi andgeneral weighting. As an appliation, an a.s. loal limit theorem of Cs�aki, F�oldes and R�ev�esz isrevisited and slightly improved.1 IntrodutionIn the last deade many interesting extensions of lassial limit theorems have been obtained asontributions to the so-alled almost sure entral limit theory. The �rst basi results were disoveredindependently by Brosamler [2℄ and Shatte [6℄, and slightly later by Laey and Philipp [4℄.Theorem A. (Brosamler, Shatte, Laey, Philipp) Let X1;X2; : : : be i.i.d. random variables withEX1 = 0; EX21 = 1 and set Sn = X1 + � � �+Xn. Thenlimn!1 1logn nXk=1 1k In Skpk � xo = �(x) a:s:(1)for every real x, where �(x) is the standard normal distribution funtion, and If�g stands for theindiator of the event in urly brakets.This result has been extended and generalized in several ways. In their 1991 paper [1℄ Berkesand Dehling provide a systemati study of logarithmi analogues of lassial limit theorems. Theyalso present an e�etive method whih an be applied to all similar problems. It is based on theobservation that, under very mild onditions, the a.s. limit behaviour of the sequenes1log n nXi=1 1i InSi � biai < xo and 1log n nXi=1 1i P�Si � biai < x�oinide. More preisely, de�ning �i = InSi�biai < xo�P�Si�biai < x� we havelimn!1 1log n nXi=1 1i �i = 0 a:s:(2) Key words and phrases: a.s. entral limit theorem, logarithmi average, maximal inequality2000 Mathematis Subjet Classi�ation: 60 F 15 1



M�ori [5℄ found onditions that are suÆient for a more general sequene f�ig to guarantee (2).The main assumption of this result was the existene of a suitable funtion h as an upper boundof the ovarianes, in the form of E�i�j � h(j=i), 1 � i � j.More preisely, let us de�ne l(x) = log x for e � x and l(x) = 1 for 0 < x � e. Let l1(x) = l(x)and lk(x) = l(lk�1(x)) for k � 2.Theorem B. (M�ori [5℄) Let �1; �2; : : : be arbitrary random variables with �nite varianes. Supposethere exists a positive non-inreasing funtion h on the positive numbers and a positive integer msuh that(3) 1Z1 h(z) lm(z)zl(z) dz <1;and for any 1 � i � j(4) E(�i�j) � h�ji� :Then limn!1 1l(n) nXi=1 1i �i = 0 a.s.In the present paper we derive a result of similar kind, but with an h whih is not essentiallybounded in the neighborhood of 1 (Theorem 1). This property of h enables us to apply our resultfor proving a.s. loal limit theorems. As an example, in Setion 4 we revisit a theorem of Cs�aki,F�oldes and R�ev�esz on the limit behaviour of the logarithmi averages1log n nXk=1 Ifak � Sk � bkgkP(ak � Sk � bk) ;where bk � ak = o(pk) is allowed. By using Theorem 1 we are able to prove the same result undersomewhat weaker onditions.Dealing with logarithmi averages one an naturally ask what ould be said when the weightingis non-logarithmi; that is, when the asymptoti behaviour of the more general weighted averages1B(n) nXi=1 wi�iis onsidered, where fwkg is a non-negative weighting sequene and B(n) =Pnk=1wk. By applyinga simple transformation we an adapt Theorem 1 to this ase as well, thus obtaining a fairlygeneral result on the stability of weighted averages of random variables with arbitrary dependenestruture. That kind of problems will be studied in Setion 3.2



2 Logarithmi weightingDropping the boundedness of seond moments we have to add a further ondition on the boundingfuntion h in the neighborhood of 1, and another one that regulates the growth of the seondmoments.Theorem 1. Let �1; �2; : : : be arbitrary random variables with �nite varianes. Suppose there existsa non-inreasing positive funtion h de�ned on (1; 1), suh that for all 1 � i < j(5) E(�i�j) � h�ji�;Suppose that funtion h satis�es(6) 1Z1 h(z) lm(z)zl(z) dz <1 ;for some positive integer m; and(7) 1Z0 h(z + 1)�log 1z�2(1+") dz <1 ;for some " > 0. Finally, suppose that for all 1 � i(8) E(�2i ) � S(i) ;where the sequene fSg satis�es 1Xi=1 1i2 S(i) <1 :(9)Then we have limn!1 1l(n) nXi=1 1i �i = 0 a:s:Proof. For the sake of brevity let us introdue some notations. Let�(t) = X1�i<t 1i �i;where t is an arbitrary positive number, greater than 1. For positive real numbers 1 � s < t and apositive inreasing sequene fakg we shall adopt the abbreviations�(s; t j fakg) = #fk : s � ak < tg;�(s; t j fakg) = maxs�ak<t j�(ak)� �(s)j :3



We are going to apply the method of subsequenes in the same way as it was done in the proofof Theorem B in [5℄. We will prove �(n)=l(n) ! 0 along more and more dense subsequenes ofpositive integers, arriving at N itself in the end.We �rst show that(10) E 1Xk=1 �2(Nk)l2(Nk)! <1for a suÆiently sparse subsequene fNkg. From this one an onlude thatlimk!1 �(Nk)=l(Nk) = 0 a.s.Then the following iterative steps will be arried out repeatedly. At eah step we onsider asubsequene fakg of the positive integers, and a sub-subsequene fbkg � fakg. We start from thelimit relation limk!1 �(bk)=l(bk) = 0 a.s., and aim at the same with ak in plae of bk, by hekingif(11) limk!1��bk; bk+1 �� fang�=l(bk) = 0 a.s.It is learly suÆient, sine for bk � an < bk+1 we havej�(an)jl(an) � j�(bk)j+ ��bk; bk+1 �� fang�l(bk) :We will prove (11) by showing the �niteness of the expetation(12) E 1Xk=1 �2�bk; bk+1 �� fang�l2(bk) ! :At the �rst step bn = Nn is taken. At every subsequent step, for fbng we hoose the fang ofthe preeding step. We �nally omplete the proof by setting fang = N at the last step.In order to show the �niteness of (10) and (12) let us de�ne the funtiong(s; t) = 2 Xs�i<j�1<t�1 1ij h�ji�+ 3 Xs�i<t 1i2 S(i):By applying the estimation Ej�i�i+1j � �E�2i E�2i+1�1=2 � 12 �E�2i +E�2i+1� we learly haveE(�(t)� �(s))2 = Xs�i<t Xs�j<t 1ij E(�i�j) � g(s; t) :(13)In addition, for any 1 � s < t < u the subadditive propertyg(s; t) + g(t; u) � g(s; u) :4



holds. So we an apply Sering's maximal inequality [7℄ to the sequene f�i=ig:E�2�s; t j fakg� � 6 l��(s; t j fakg)�2g(s; t):(14)Let us estimate g(s; t). For arbitrary 1 � i < j let Dij denote the parallelogram with verties(i; j); (i + 1; j); (i + 1; j + 1); (i + 2; j + 1). Under the assumption of (x; y) 2 Dij ; i 6= j we have1xy h�yx� � 1(i+ 2)(j + 1) h�ji� � 16ij h�ji�;hene g(s; t) � Xs�i; i+2�j<t 12 ZDij 1xy h�yx� dxdy + 3 Xs�i<t 1i2S(i)� 12 Zfs�x�y�1<tg 1xy h�yx� dxdy + 3 Xs�i<t 1i2 S(i) :Extending the range of integration, then substituting z = y=x we getZfs�x�y�1<tg 1xy h�yx� dxdy � Zns�x<t; 1� yx<t+1s o 1xy h�yx� dxdy = tZs dxx t+1sZ1 h(z)z dz:The �rst integral on the right-hand side is equal to log(t=s). In the seond one one an use thatthe integrand is a dereasing funtion of z, henet+1sZ1 h(z)z dz � t+ 1t tsZ1 h(z)z dz � 2 tsZ1 h(z)z :From all these one an onlude that(15) g(s; t) � 24 log� ts� tsZ1 h(z)z dz + 3 Xs�i<t 1i2 S(i) :Partiularly, from (13), (15), and assumption (9) it follows thatE 1Xk=1 �2(Nk)l2(Nk)! � 1Xk=1 g(1; Nk)l2(Nk)� C 1Xk=1 1l(Nk) NkZ1 h(z)z dz + C 1Xk=1 1l2(Nk) X1�i<Nk+1 1i2 S(i)� C 1Z1 h(z)z �XNk>z 1l(Nk)�dz + C 1Xk=1 1l2(Nk) :(16)
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if Nk ! 1. Here and in the sequel C always stands for a suitable positive onstant that mayhange at every appearane.Let us turn to the estimation of (12). Let us briey denote l2��(bk; bk+1 j fakg)�l2(bk) by k. Thenby (14), (15) and assumption (9) we get(17) E 1Xk=1 �2�bk; bk+1 �� fang�l2(bk) ! � C 1Xk=1 k g(bk; bk+1)� C 1Xk=1 k log�bk+1bk � bk+1bkZ1 h(z)z dz +C 1Xk=1 k Xbk�i<bk+1 1i2 S(i)� C 1Z1 h(z)z " Xbk+1bk >z k log�bk+1bk �# dz +C supk�1 k :Now we are ready to realize our plan of work. For arbitrary positive integer r let us de�neN (r)k = lexp�exp� kl2r(k)��m. Set Nk = N (m)k . In order to prove (10) we use estimation (16).Routine alulations show that XN(r)k >z 1l(N (r)k ) � C l2r+2(z)l(z) ;(18)hene by (6) the �rst term in the last row of (16) is �nite. On the other hand, the �niteness of theseond sum is obvious. Thus (10) holds.We ontinue the proof with the �rst m� 1 steps. At step i let us hoose ak = N (m�i)k and bk =N (m+1�i)k . It is easy to see that with the above de�ned N (r)k the following asymptoti statementsare valid.(19) ��N (r)k ; N (r)k+1 �� fN (r�1)n g� � l2r�1(k)l2r(k) ; and l�N (r)k+1N (r)k � � l(N (r)k )l2r(k) :Hene at step i = m+ 1� r we have(20) k � C l2r(k)l2(N (r)k ) ; and k log�bk+1bk � � C 1l(N (r)k ) :Note that k is bounded. Furthermore, ondition bk+1=bk > z implies that l(N (r)k ) > C l2t (k)l(z)and k > l2(z), therefore N (r)k > exp �C l2r+2(z)l(z)�. Hene by (18) and (20) we obtain that(21) Xbk+1bk >z k log�bk+1bk � � C l2r+2�l2r+2(z)l(z)�l2r+2(z)l(z) � C 1l(z) :6



This, ombined with (6) and (17) proves the �niteness of (12). In the end we onlude that�(N (1)k )=l(N (1)k )! 0.At the next step let bk = N (1)k = �exp�exp�k=l2(k)��� and ak = �exp�exp�k1=3���. Then learly��bk; bk+1 �� fang� = O(k2); onsequently, (20) is valid with r = 1. Hene (21) follows, ompletingthe step in the same way as before.Next, let bk = �exp�exp�k1=3��� and ak = �exp(k1+")�, where " is the onstant introdued in as-sumption (7). Similarly to the preeding steps we obtain that ��bk; bk+1 �� fang� = O�exp� 11+"k1=3��and l( bk+1bk ) � 13k�2=3l(bk). Thus we an see again that(22) k � C k2=3l2(bk) and k log�bk+1bk � � C 1l(bk) :Moreover, if bk+1=bk > z, then l(bk) > C l(z)k2=3 > C l(z)l22(z); and one an readily verify thatXl(bk)>z 1l(bk) � C l2(z)z :Hene estimation (21) is also valid here:Xbk+1bk >z k log�bk+1bk � � C 1l(z) :We an �nish the step by plugging bak this and (22) into (17).After all these alulations let bk = �exp(k1+")�, and ak = �exp(log k)2+2"�. Then obviously��bk; bk+1 �� fang� � C exp(pk), log�bk+1=bk� � C k", hene k � C k�(1+2"), andXbk+1bk >z k log�bk+1bk � � C Xk">Cl(z) 1k1+" � C 1l(z) :As before, these are already suÆient to omplete the step.Finally, let bk = �exp(log k)2+2"�, and ak = k. Then ��bk; bk+1 �� fang� � C bk, log�bk+1=bk� �2(1 + ")k�1(log k)1+2", hene k = O(1) (and it is not hard to see that nothing better an besaid). This time the last line of (17) annot be used, beause the in�nite sum of k log�bk+1=bk�is divergent. Looking at the middle line we an see that the seond term is �nite, and in the �rstterm h(z)=z is only integrated in the neighbourhood of 1, thus this is the point where assumption(7) might be of use.Let us denote log�bk+1=bk� by wk, then the sequene wk is eventually dereasing. Sine wk �bk+1bk � 1, by the dereasing property of h we getbk+1bkZ1 h(z)z dz � C wkZ0 h(z + 1) dz :7



Thus the �rst series in the middle line of (17) an be treated in the following way.1Xk=1 k log�bk+1bk � bk+1bkZ1 h(z)z dz � C 1Xk=1wk wkZ0 h(z + 1) dz = C 1Xk=1 wkZwk+1 h(z + 1)� kPi=1wi�dz� C 1Xk=1 wkZwk+1 h(z + 1)(log k)2(1+") dz � C 1Z0 h(z + 1)�log 1z�2(1+") dz <1:by assumption (7). Hene expetation (12) is �nite, onsequently limn!1 �(n)=l(n) = 0 a.s., whihwas to be proved.3 General weightingThroughout this setion we onsider the following model. Let �1; �2; : : : be a sequene of arbitraryrandom variables with �nite varianes, and fwkg an arbitrary sequene of positive weights withpartial sums B(n) =Pnk=1wk.In Theorem 2 below we are about to state onditions for the weighted sums B(n)�1Pnk=1wk�kto onverge to 0, similar to those in Theorem 1.Theorem 2. Suppose that(23) wk � (1� ")B(k); k > 1;for some " > 0, and(24) 1Xk=1 e�mB(k) <1;for some positive integer m. Suppose there exists a non-inreasing funtion h : R+ ! R+ suh that1Z1 h(z) lm(z)z dz <1;(25) 1Z0 h(z)�log 1z�2(1+") dz <1;(26)and, in addition,(27) E��i�j� � h�B(j)�B(i� 1)�for every 1 � i � j. Then we have(28) limn!1 1B(n) nXk=1wk�k = 0with probability 1. 8



Proof. We begin the proof by separating the summands in (28) into two sums. Introduing thenotations V (n) = 1B(n) nXk=1wkIne�2mB(k) < wko �k ;W (n) = 1B(n) nXk=1wkInwk � e�2mB(k)o �k ;we show that both V (n) and W (n) onverge to 0, with probability 1.We �rst investigate the onvergene of V (n).Let M = 3m=". For eMB(k�1) � i < eMB(k) de�neki = k; e�i = �kIne�2mB(k) < wko ; eS(i) = h(wk)Ine�2mB(k) < wko :Furthermore, let eh(z) = h(M�1 log z). We will apply Theorem 1 to the sequene fe�ig. To this endwe hek onditions (5){(9).For all 1 � i < j we an writeE�e�i e�j� � E ��ki�kj� � h�B(kj)�B(ki � 1)� � eh�ji� ;(29)and for 1 � i we haveE�e�2i � = E�2kiIne�2mB(ki) < wkio � h�B(ki)�B(ki � 1)�Ine�2mB(ki) < wkio= h(wki)Ine�2mB(ki) < wkio = eS(i) :Conditions (6) and (7) of Theorem 1 are ful�lled with eh in plae of h. Indeed, by substitutingz =M�1l(x) and using (25) we have1ZeM eh(x) lm+1(x)xl(x) dx = 1ZeM h� log xM � lm(l(x))xl(x) dx = 1Z1 h(z) lm(Mz)z dz <1 ;and from (26), by substituting z =M�1 log(x+ 1) we get1Z0 eh(x+ 1)�log 1x�2(1+") dx � 1Z0 h� log(x+ 1)M ��log 1log(x+ 1)�2(1+") dx� log 2MZ0 h(z)�log 1Mz�2(1+")eMz dz � 2 1Z0 h(z)�log 1z�2(1+") dz <1:
9



Regarding eS we �rst note that B(k � 1) > "B(k) by (23). Hene we have1Xi=1 1i2 eS(i) = 1Xi=1 1i2 h(wki)Ine�2mB(ki) < wkio= 1Xk=1� XeMB(k�1)�i<eMB(k) 1i2�Ine�2mB(k) < wkoh(wk)� C 1Xk=1 h(wk)e�MB(k�1)Ine�2mB(k) < wko� C Xwk�1h(wk)e�3mB(k) + C Xwk<1wkh(wk)e�mB(k):Here h(wk) � h(1) if wk � 1, and for wk < 1 we have wkh(wk) � s10 h(z) dz < 1. Thus, by (26)and (24), (9) holds with eS in plae of S.Now, by Theorem 1 one obtains that(30) 1MB(n) Xi<eMB(n) 1i e�i ! 0 a.s.Finally, we will prove that the di�erene between the left-hand side of (30) and V (n) tends to0 with probability 1. Clearly,(31) ����� XeMB(k�1)�i<eMB(k) 1i � eMB(k)ZeMB(k�1) 1x dx ������ e�MB(k�1) � e�3mB(k)Hene we get����� 1M Xi<eMB(n) 1i e�i � nXk=1wkIne�2mB(k) < wko �k �����= 1M ����� nXk=1 Ine�2mB(k) < wko �k� XeMB(k�1)�i<eMB(k) 1i � eMB(k)ZeMB(k�1) 1x dx� ������ 1M 1Xk=1 Ine�2mB(k) < wko j�kje�3mB(k):This series onverges with probability 1, beause its expetation is �nite:1Xk=1Ej�kje�3mB(k)Ine�2mB(k) < wko � 1Xk=1ph(wk) e�3mB(k)Ine�2mB(k) < wko� Xwk�1ph(wk) e�3mB(k) + Xwk<1pwkh(wk) e�2mB(k)� �ph(1) + � 1s0 h(z) dz�1=2� 1Xk=1 e�mB(k) <1:10



Let us turn to W (n). Obviously,(32) E 1Xn=1 max�jW (k)j : 2n � B(k) < 2N+1 	! <1would imply the a.s. onvergene of W (n) to 0.The left-hand side of (32) an be estimated in the following way.E 1Xn=1max�jW (k)j : 2n � B(k) < 2n+1 	!� E 1Xn=1 12n Xk:B(k)<2n+1 Inwk � e�2mB(k)owkj�kj!� 1Xk=1 Inwk � e�2mB(k)owkEj�kj Xn:B(k)�2n+1 12n� C Xwk<1pwkh(wk) e�mB(k) 1B(k) � C 1Xk=1 e�mB(k) <1by (24).Remark 1. Conditions (23) and (24) are obviously satis�ed in the important partiular ase ofweights wk = k�, � � �1. Though ondition (23) would allow weights that grow exponentiallyfast, the real area of appliation is the ase where the weights are bounded. At the other end,ondition (24) is hurt if kwk ! 0.Remark 2. Though Theorem 1 itself is not a partiular ase of Theorem 2, a very similar butslightly weaker result an be derived from that; namely, S(i) is supposed to inrease with i, andondition (9) is to be replaed by the stronger one1Xi=1 (log i)2(1+")i2 S(i) <1 :4 Appliation: an a.s. loal limit theoremIn the rest of the paper we revisit and slightly improve an a.s. loal limit thoerem due to Cs�aki,F�oldes and R�ev�esz [3℄. Let X1;X2; : : : be i.i.d. random variables with 0 mean and �nite thirdmoment, and let Sn = X1 + � � � + Xn denote their partial sums. Let ak, bk be (extended) realnumbers, �1 � ak � 0 � bk �1. De�ne pk = P(ak � Sk � bk), and�k =8<: Ifak � Sk � bkgpk ; if pk 6= 0,1 if pk = 0, :11



Theorem 3. Suppose(33) Xk: pk 6=0 l22(k)pk k3=2 log k <1holds. Then limn!1 1logn nXk=1 �kk = 1 a.s.Remark 3. In Theorem 2.5 in [3℄ the same onlusion was drawn from a somewhat stronger as-sumption, namely, that(34) X1�k�npk 6=0 log kk3=2pk = O(log n)as n!1. From this latter assumption (33) an be derived; moreover, (33) is even implied by thefollowing, similar to (34), but weaker ondition.(35) X1�k�npk 6=0 l32(k)k3=2pk = O(log n):Indeed, Xpk 6=0 l22(k)pk k3=2 log k � C Xpk 6=0 l32(k)k3=2pk Xn>k 1n log2 n l22(n)= C 1Xn=1 1n log2 n l22(n) X1�k�npk 6=0 l32(k)k3=2pk � C Xn>1 1n logn l22(n) <1 ;by (35).For the proof we shall need the following lemma, whih is just a slightly modi�ed version ofLemma 2.9 in [3℄.Lemma 1. Suppose that bk � ak = O�pk�. Then for all 1 � i < j we havejov(�i; �j)j � C  i1=2(j � i)1=2 + 1pj(j � i)1=2!Proof of Theorem 3. Similarly to the proof of Theorem 2.5 in [3℄, we �rst suppose bk � ak � Cpk.We are going to show that limn!1 1l(n) nXk=1 �kk = 012



with probability 1, where �k = �k � 1. To this end, we proeed in the same way as in the proofof Theorem 2. We divide the sum into two, aording to the size of summands. To the largesummands we apply Theorem 1, while the other part proves to be so small that even a onvergentseries with �nite expetation an be omposed from it. Thus, let us de�neT (n) = 1l(n) nXk=1 1k Inpkpk < l22(k)o �k ;U(n) = 1l(n) nXk=1 1k Inpkpk � l22(k)o �k = 1l(n) nXk=1 �0kk :We will show that both sequenes onverge to 0 a.s.We �rst deal with the onvergene of U(n). So as to apply Theorem 1, we have to �nd anappropriate funtion h. By Lemma 1, for 1 � i < j we an writeE��0i�0j� = Inpipi � l22(i)o Inpjpj � l22(j)o ov(�i; �j)� C Inpipi � l22(i)o Inpjpj � l22(j)o� i1=2(j � i)1=2 + 1pj(j � i)1=2�� C � 1(z � 1)1=2 + z1=2l22(z)(z � 1)1=2�� C � 1l22(z) + 1(z � 1)1=2� =: h(z) ;(36)
where z = j=i. Note that the last line of (36) is already a dereasing funtion of z.Next, we de�ne S(i). By de�nition of �0i we haveE��0i2� = Inpipi � l22(i)oVar(�i) = Inpipi � l22(i)o� 1pi � 1� � i1=2l22(i) =: S(i) :It is not hard to see that these h and S satisfy the onditions of Theorem 1. Namely, (6), (7),and (9) are implied by the following estimations, respetively.1Z1 h(z) l3(z)zl(z) dz � C 1Z1 l3(z)zl(z)l22(z) dz + C 1Z1 l3(z)zl(z)(z � 1)1=2 dz <1 ;1Z0 h(z + 1)�log 1z�2(1+") dz � C 1=2Z0 1z1=2�log 1z�2(1+") dz <1 ;1Xi=1 1i2 S(i) < 1Xi=1 1i3=2 <1 :By Theorem 1 we �nally obtain that U(n) ! 0 with probability 1 under the assumptionbk � ak � Cpk. 13
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