Almost sure convergence of weighted partial sums
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Abstract

In the paper sufficient conditions of covariance type are presented for weighted averages of
random variables with arbitrary dependence structure to converge to 0, both for logarithmic and
general weighting. As an application, an a.s. local limit theorem of Csédki, Foldes and Révész is
revisited and slightly improved.

1 Introduction

In the last decade many interesting extensions of classical limit theorems have been obtained as
contributions to the so-called almost sure central limit theory. The first basic results were discovered
independently by Brosamler [2] and Schatte [6], and slightly later by Lacey and Philipp [4].

Theorem A. (Brosamler, Schatte, Lacey, Philipp) Let X;, X5,... be ii.d. random variables with
EX; =0, EX? =1and set S, = X; + -+ X,,. Then

R RN Ry
for every real z, where ®(z) is the standard normal distribution function, and I{-} stands for the
indicator of the event in curly brackets.

This result has been extended and generalized in several ways. In their 1991 paper [1] Berkes
and Dehling provide a systematic study of logarithmic analogues of classical limit theorems. They
also present an effective method which can be applied to all similar problems. It is based on the
observation that, under very mild conditions, the a.s. limit behaviour of the sequences
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coincide. More precisely, defining &; = I{ila_l—bl < x} -P (i’_—bl < x) we have
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Moéri [5] found conditions that are sufficient for a more general sequence {¢;} to guarantee (2).
The main assumption of this result was the existence of a suitable function A as an upper bound
of the covariances, in the form of E&;¢; < h(j/i), 1 <i <j.

More precisely, let us define [(z) = logz for e < z and I(z) =1 for 0 < z < e. Let l1(z) = I(z)
and lg(z) = 1(l_1(z)) for k > 2.

Theorem B. (Mori [5]) Let &1, &9, ... be arbitrary random variables with finite variances. Suppose
there exists a positive non-increasing function h on the positive numbers and a positive integer m
such that

(3) / h<z>27<(f>) dz < oo,
1

and for any 1 <i < j

(4) E(&ig;) < h(%) :

Then
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In the present paper we derive a result of similar kind, but with an A which is not essentially
bounded in the neighborhood of 1 (Theorem 1). This property of h enables us to apply our result
for proving a.s. local limit theorems. As an example, in Section 4 we revisit a theorem of Csiki,
Foldes and Révész on the limit behaviour of the logarithmic averages

1 < Iap < Sp <by}
logn & kP(ay < Si < by) ’

where by, — a, = o(Vk) is allowed. By using Theorem 1 we are able to prove the same result under
somewhat weaker conditions.

Dealing with logarithmic averages one can naturally ask what could be said when the weighting
is non-logarithmic; that is, when the asymptotic behaviour of the more general weighted averages

1 n
B(n) ;wzfi

is considered, where {wy} is a non-negative weighting sequence and B(n) = >}, wy. By applying
a simple transformation we can adapt Theorem 1 to this case as well, thus obtaining a fairly
general result on the stability of weighted averages of random variables with arbitrary dependence
structure. That kind of problems will be studied in Section 3.




2 Logarithmic weighting

Dropping the boundedness of second moments we have to add a further condition on the bounding
function A in the neighborhood of 1, and another one that regulates the growth of the second
moments.

Theorem 1. Let &1,&o, ... be arbitrary random variables with finite variances. Suppose there exists
a non-increasing positive function h defined on (1, o), such that for all 1 <i < j

(5) B(6¢) < h(?).

1

Suppose that function h satisfies

r I (2)
(6) 1/ h(z) 21(2) dz < o0,

for some positive integer m; and

1

14+e
(7) /h logl)( )dz<oc,
0

for some € > 0. Finally, suppose that for all 1 <4

(8) E(¢?) < S3) ,

where the sequence {S} satisfies

(9) > 5 S(i) < o0
i=1
Then we have

nh_)ngcl Z & = a.s.

Proof. For the sake of brevity let us introduce some notations. Let
1
U(t) = Z ; &,
1<i<t

where ¢ is an arbitrary positive number, greater than 1. For positive real numbers 1 < s < ¢t and a
positive increasing sequence {ay} we shall adopt the abbreviations

v(s,t | {ar}) = #{k: s <a <t}
uls,t [ {ax}) = max [n(ar) —n(s)].
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We are going to apply the method of subsequences in the same way as it was done in the proof
of Theorem B in [5]. We will prove 7(n)/l(n) — 0 along more and more dense subsequences of
positive integers, arriving at N itself in the end.

We first show that

— 7 (Ng)
(10) E (kl ZQ(Nk)> < oo

for a sufficiently sparse subsequence { Ny }. From this one can conclude that
lim n(Ng)/l(Ng) =0 a.s.
k—o0

Then the following iterative steps will be carried out repeatedly. At each step we consider a
subsequence {ay} of the positive integers, and a sub-subsequence {b;} C {ay}. We start from the
limit relation limy_, o 7(bg)/l(br) = 0 a.s., and aim at the same with ay in place of b, by checking
if

(11) klifgcﬂ(bk,bk+1 | {an})/l(br) =0 as.

It is clearly sufficient, since for by < a, < bxy1 we have

n(an)l _ n(bk)| + 14 (bg, bes1 | {an})
lan) — L(br) '

We will prove (11) by showing the finiteness of the expectation

(12) E (i 1% (be, bt | {an})> '

2
P 1%(br)

At the first step b, = N, is taken. At every subsequent step, for {b,} we choose the {a,} of
the preceding step. We finally complete the proof by setting {a,} = N at the last step.
In order to show the finiteness of (10) and (12) let us define the function

gs.y=2 ih(%)mzii?su).

A 1] -
s<i<j—1<t—1 s<i<t

By applying the estimation E|{;&; 11| < (Efz2 EfZ-QH)l/2 < % (Efz2 + EQQH) we clearly have

(13) Bt —n(s)?= > 3 %E(@@) < gs,1)

s<i<t s<j<t

In addition, for any 1 < s <t < u the subadditive property

g(s,t) +g(t,u) < g(s,u).



holds. So we can apply Serfling’s maximal inequality [7] to the sequence {¢;/i}:

(14) Ep?(s,t | {ag}) < 61(v(s,t | {ar}))’g(s.1).

Let us estimate g(s,t). For arbitrary 1 <i < j let D;; denote the parallelogram with vertices
(4,5),(i+1,5),(i+1,5+1),(i+ 2,7+ 1). Under the assumption of (z,y) € D;;, i # j we have

1 1y 1 j 1 /g
. h() > (i+2)(+1) h(3) 2 6ij h(3)
hence
g(s,t) < Z | 12/$h(%) dzdy + 3 Z 2125(2)
<, 1 +2<5<t Dij s<i<t
<12 / éh(%) drdy+3 Y Z,%S(i).
{s<ae<y-1<t}

Extending the range of integration, then substituting z = y/z we get

t
[ p@ems [ Ga@)ane [ [
1

{s<z<y-1<t} {s<a<t, 1§%<%} s

The first integral on the right-hand side is equal to log(¢/s). In the second one one can use that
the integrand is a decreasing function of z, hence

t+1

t
(15) g(s, 1) < 2410g<§)/h(z) dz+3 Y Z,lQS(z').
1

Particularly, from (13), (15), and assumption (9) it follows that

’
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if N — oo. Here and in the sequel C' always stands for a suitable positive constant that may
change at every appearance.
(v (bg, b g1 | {ax}))

12(by)

Let us turn to the estimation of (12). Let us briefly denote by ;. Then

by (14), (15) and assumption (9) we get

oc 9 an 1)
(17) E (Z . (bk’?ﬁjblk) { })> <C Z% 9(br, bg41)

k=1 k=1

h(z

dz+C’ Z'yk Z %S(z’)

b=l b<icbisr |
<c / [ e log (bm)
bi
bk+1

Now we are ready to realize our plan of work. For arbitrary positive integer r let us define

k
ngr) = [exp(exp<m)ﬂ. Set N = N,Em). In order to prove (10) we use estimation (16).

<C Z'yklog Dits

dz+ C sup g .
k>1

Routine calculations show that

1 I} 5(2)
(18) > — <02
N (N I(2)

hence by (6) the first term in the last row of (16) is finite. On the other hand, the finiteness of the
second sum is obvious. Thus (10) holds.

We continue the proof with the first m — 1 steps. At step 4 let us choose a; = N,Em_i) and b, =

N,Emﬂ*i). It is easy to see that with the above defined N, Igr) the following asymptotic statements
are valid.

2 (r) ()
(1) p(r) ) o =1 (k) Nea) L")
(19) V(Nk N [ AN }) B and [ N HOR

Hence at step ¢ = m + 1 — r we have

1
Ny

12(k b+
(20) v < C (k) , and 'Yklog(

< ) <C
2(N)

by,

Note that ~y is bounded. Furthermore, condition by;1/by > 2z implies that l(N,gr)) > CI2(k)I(2)
and k > l2(z), therefore N,g RIS exp (C'12,,(2)I(z)). Hence by (18) and (20) we obtain that

(21) Z Vi log(bl;)“) <C ZH?E(ZJEQSZZ(ZEZ)) <C %

k+1 >z
bk



This, combined with (6) and (17) proves the finiteness of (12). In the end we conclude that
1 1
() D) = 0.

At the next step let b, = N,El) = {exp(exp (k/ZQ(k))ﬂ and ap = [exp(exp(lﬂlm)ﬂ. Then clearly
v (bg, g1 ‘ {an}) = O(k?); consequently, (20) is valid with r = 1. Hence (21) follows, completing
the step in the same way as before.

Next, let by = [exp (exp(kzl/S)ﬂ and a = {exp(kzl*‘gﬂ , where ¢ is the constant introduced in as-

1 k1/3))

sumption (7). Similarly to the preceding steps we obtain that v (bk, bii1 ‘ {an}) =0 (exp( T

and l(b’z—zl) ~ %l{;*2/3l(bk). Thus we can see again that

E2/3 b1 1
22 <C d 1 <C ——.
(22) =T P,y T Og( by, ) = U(bk)
Moreover, if by 1/b, > z, then I(by) > C'1(2)k*/® > C'l(2)I13(2); and one can readily verify that

1 (Z)
> i <9

l(bk)>z

Hence estimation (21) is also valid here:
b 1
5 () <0 L
, by, (2)
7’2'“ >z

We can finish the step by plugging back this and (22) into (17).

After all these calculations let by, = [exp(k”’s)], and ap = [exp(log k)2+25]. Then obviously
v (bk, b1 | {an}) < C exp(Vk), log(b41/bk) < Ck®, hence v, < C'k~(142) and

Z 7’fl()g( )<C Z kl-l—a— %

k+1
by, >z

As before, these are already sufficient to complete the step.

Finally, let by = [exp(logk)?*|, and aj, = k. Then v(bg, bg41 ‘ {an}) < C by, log(bgt1/bx) ~
2(1 + )k '(logk)' 2, hence vy, = O(1) (and it is not hard to see that nothing better can be
said). This time the last line of (17) cannot be used, because the infinite sum of ~; log (by+1/bx)
is divergent. Looking at the middle line we can see that the second term is finite, and in the first
term h(z)/z is only integrated in the neighbourhood of 1, thus this is the point where assumption
(7) might be of use.

Let us denote log (ka/bk) by wy, then the sequence wy is eventually decreasing. Since wy ~

b
SR 1, by the decreasing property of h we get

bi
b1
by W
/ Mz) szC’/h(z+1)d
z
1 0



Thus the first series in the middle line of (17) can be treated in the following way.

& Wy
Z%log k+1 / Sci / z—|— dz—CZ / Z—l—l iwz)dz
1 k=1 :1

wk+1

1
2(1+¢
SCZ/ (z 4+ 1)(log k)09 dz < C / z+1)<log1)( )dz<oo
0

wk+1

by assumption (7). Hence expectation (12) is finite, consequently hm n(n)/l(n) = 0 a.s., which

was to be proved. O

3 General weighting

Throughout this section we consider the following model. Let &1,&, ... be a sequence of arbitrary
random variables with finite variances, and {wg} an arbitrary sequence of positive weights with
partial sums B(n) = > ;_, w.

In Theorem 2 below we are about to state conditions for the weighted sums B(n) = >")_; wiéy
to converge to 0, similar to those in Theorem 1.

Theorem 2. Suppose that

(23) we < (1= )B), k> 1,
for some ¢ > 0, and

0
(24) Z emMBR) < o,

k=1

for some positive integer m. Suppose there exists a non-increasing function h : Ry — Ry such that

o

(25) /h(z)lm(z) dz < oo,

z

: (1+5)
(26) / h(z log dz < o0,
0
and, in addition,
(27) E(¢i€5) < h(B(j) — B(i — 1))

for every 1 < i < j. Then we have

(28)

n—>oo B

with probability 1.



Proof. We begin the proof by separating the summands in (28) into two sums. Introducing the
notations

=B ZwkI{ ~2mB(k <wk}sza

1
B(n)
) = % ;wkl {wk < 672"13(]“)} &k s

we show that both V(n) and W (n) converge to 0, with probability 1.
We first investigate the convergence of V(n).

Let M = 3m/e. For eMBE-D) < < MB(k) define

ki =k, & =& {e*QmB(’” < wk} . S() = h(wy)I {e*QmB(’” < wk} .

Furthermore, let h(z) = h(M~"log z). We will apply Theorem 1 to the sequence {&}. To this end
we check conditions (5)—(9).
For all 1 <14 < j we can write

(29) E(66) < B (&) < h(BU) - Bl - D) <K(1).
and for 1 <7 we have

E(&2) = E{,%il{ —2mBki) < } < h(B(k;) — B(k; — 1)1 {6—2mB<ki) < wk,»}

:h(wki)I{ —2mB(k; )<wk} S(7) .

Conditions (6) and (7) of Theorem 1 are fulfilled with 4 in place of k. Indeed, by substituting
z = M~1i(z) and using (25) we have

/ﬁ(az)li;—;(lfif) dz = /h<loz\g4x) lz(ll((;))) dz = /h(z)@ dz < o0,
eM eM 1
and from (26), by substituting z = M~ log(z + 1) we get
1 1
/h log 2t dz < /h log (log m)Q(HS) dx
0 0

1
1+e 2(14¢
< / h(z )(log]\; ) % )eMZszZ /h(z)(log%) ( )dz<oo.
0 0



Regarding S we first note that B(k — 1) > eB(k) by (23). Hence we have
ELOEDS i—Qh(wki)I{ —2mB(k) < }
i=1 i=1
> 1
( Z 5)1{62"13(]“) < wk}h(wk)
k=1 )

7
eMB(k—1) <j<eMB(k

oo

Zh(wk)e—MB(k—l)I {e—QmB(k) < wk}
k=1

<C h(wy)e 3mBE) 4 ¢ Z wih(wy)e mBE),

wg>1 wi <l

<

Q

Here h(wy) < h(1) if wy > 1, and for wy < 1 we have wih(wy) < Jo h(z)dz < co. Thus, by (26)
and (24), (9) holds with S in place of S.
Now, by Theorem 1 one obtains that

(30) MB}(n) Z %f 0 a.s.

i<8MB(n)

Finally, we will prove that the difference between the left-hand side of (30) and V(n) tends to
0 with probability 1. Clearly,

MB(k)

(31) < efMB(kfl) < 673mB(I§)

> o / Lz |<

7 x
eMB(k-1) <jeMB(k) eMB(k—1)

Hence we get

Z<eMB(n) k=1
. ¢MB(k)
1 1 1
= — I{e‘QmB( <w } - — / —dz
M Z kS Z 7 T
k=1 eMB(k—1) <j<eMB(k) eMB(k—1)

1« —2mB(k —3mB(k)
gM;I{e i ()<wk}|£k|e mEW)

This series converges with probability 1, because its expectation is finite:

iEEk\@%mmmI {672mB < wk} Z Vh(wg) e SmBk {6*2"13(’6) < wk}
k=1
< Z v h(wy) e‘gmB + Z w/wkh(wk)e_QmB(k)

wi>1 wi<1
< (\/W'i- (0}11(2) dz)1/2> gemB(m < 0.
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Let us turn to W(n). Obviously,

(32) E (i max {|W (k)| : 2" < B(k) < 2N+! }) < 00

n=1

would imply the a.s. convergence of W(n) to 0.
The left-hand side of (32) can be estimated in the following way.

E(i max {|W (k)| : 2" < B(k) < on-+1 }>
n=1

(i% 2; e 2Pl }wkm)

s
“)

o o]
1
<> I{ <e?mPW L BlGl Y on
k=1 n: B(k)<2n+1
1 o
<C Z Vwih(wg) e”mBE) B <C Ze‘mB(k)
we<1 k=1
by (24). O

Remark 1. Conditions (23) and (24) are obviously satisfied in the important particular case of
weights wy, = k*, A\ > —1. Though condition (23) would allow weights that grow exponentially
fast, the real area of application is the case where the weights are bounded. At the other end,
condition (24) is hurt if kwy — 0.

Remark 2. Though Theorem 1 itself is not a particular case of Theorem 2, a very similar but
slightly weaker result can be derived from that; namely, S(i) is supposed to increase with 7, and
condition (9) is to be replaced by the stronger one

i (log 7;)2(14‘6)

72

; S(i) < 0o

i=1
4 Application: an a.s. local limit theorem

In the rest of the paper we revisit and slightly improve an a.s. local limit thoerem due to Csaki,
Foldes and Révész [3]. Let Xy, Xs,... be i.i.d. random variables with 0 mean and finite third
moment, and let S, = X7 + --- + X,, denote their partial sums. Let ag, by be (extended) real
numbers, —0o < a; < 0 < by < 00. Define pp = P(a < S < bg), and

ap = Pk

1 if pr, =0,
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Theorem 3. Suppose

Z 3/2
ke pr0 pr k3/2log k
holds. Then
) 1 — Qay,
lim — =1 a.s.

n—oo logn Pt k

Remark 3. In Theorem 2.5 in [3] the same conclusion was drawn from a somewhat stronger as-
sumption, namely, that

log k&
(34) Z 5, = O(logn)
1<k<n K2 py
pp#0

as n — oo. From this latter assumption (33) can be derived; moreover, (33) is even implied by the
following, similar to (34), but weaker condition.

(35) Z Bk _ O(logn)
3/24, )
1<k<n k32py
PLF0
Indeed,

I5(k) 5 (k) 1
%:Pkk3/210gk SCPX;; k3/2 2 2
k

Pe =3 nlog”ni3(n)

> 13(k) 3 1
< C YA < oo,
Vo k3/2py, = nlognli(n)
P70

o

D D vy

=1

n log? nl2( )

by (35).

For the proof we shall need the following lemma, which is just a slightly modified version of
Lemma 2.9 in [3].

Lemma 1. Suppose that by — a = O(\/E) Then for all 1 <1 < j we have

7:1/2 1
lcov(a;, ;)| < C ((] —)1/2 + pi(3 — 1)1/2>

Proof of Theorem 3. Similarly to the proof of Theorem 2.5 in [3], we first suppose by — ap, < CVk.
We are going to show that



with probability 1, where £ = ap — 1. To this end, we proceed in the same way as in the proof
of Theorem 2. We divide the sum into two, according to the size of summands. To the large
summands we apply Theorem 1, while the other part proves to be so small that even a convergent
series with finite expectation can be composed from it. Thus, let us define

T(n) = v S T pVE < B} &

3

U(”):L %I{pk\/EZl%( }51@—% Z%

We will show that both sequences converge to 0 a.s.
We first deal with the convergence of U(n). So as to apply Theorem 1, we have to find an
appropriate function . By Lemma 1, for 1 < i < j we can write

E(6¢)) = H{pivi 2 56)  1{p; Vi 2 B) } coviai, ay)
<c{pvi>B6) 1 {pi> 30 }( ! )

6) (G —=DY2 pi(G— i)
1 21/2
=¢ ((z D2 T BEG 1)1/2)

1 1
=¢ (l%(z) e 1)1/2) = hlz),

where z = j/i. Note that the last line of (36) is already a decreasing function of z.
Next, we define S(i). By definition of & we have

B(¢) =1{p:Vi > (i)} Var(as) = 1{p:i > () } (% -1) < é% =: 5(i) .

It is not hard to see that these h and S satisfy the conditions of Theorem 1. Namely, (6), (7),
and (9) are implied by the following estimations, respectively.

7h(z) z
1

1

1\ 2(1+e) 1 1\ 2(1+¢)
/h(z—kl)(log;) dng/m(log;) dz < oo,
0

dz+C/ 2_11/2dz<oc,

8

1 . =1
ZZ—QS(Z)<ZZS7<OO
i=1 i=1

By Theorem 1 we finally obtain that U(n) — 0 with probability 1 under the assumption
by — a, < CVk.

13



Next, we prove that T'(n) converges to 0 a.s. We show that the expectation

(37) E (Z max{\T(k:)| cexp (2") < k < exp (2n+1) })

n=1
is finite. Now, (37) is clearly less than

gnt+1
=1 ° 1
BlY 5 2 S1{mvE < B0} el

Here E|¢;| < 2, hence, by interchanging the order of expectation we obtain that (37) is majorized
by

=1 ) 1 | )
l — <
¢y kl{pk\/E<z2(k)} POREELD klogkl{pk\/EaQ(k)}
k=1 2n+1>log k k=1
<C 13(k)
- ¥ k3/21logk

with probability 1, under the condition by — ay < Cvk. From this point on the proof of Theorem
2.5 in [3] can be repeated to relax the restriction on by — ay. O
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