SEPARATING SYSTEMS OF RANDOM SUBSETS

TAMÁs F. Móri
Eötvös Loránd University, Budapest

$$
28.10 .1999
$$

Abstract. Let A_{1}, A_{2}, \ldots be i.i.d. random subsets of the positive integers generated in such a way that the events $\left\{i \in A_{j}\right\}, 1 \leq i, 1 \leq j$ are independent and of the same probability p. For every $n=1,2, \ldots$ let $\Omega_{n}=\{1,2, \ldots, n\}$ and define $A_{j}^{(n)}=A_{j} \cap \Omega_{n}$. Finally, let

$$
Y_{n}=\min \left\{j: A_{1}^{(n)}, A_{2}^{(n)}, \ldots, A_{j}^{(n)} \text { separate } \Omega_{n}\right\} .
$$

(We say that Ω_{n} is separated by a family \mathcal{A} of its subsets if for any two elements x, y of Ω_{n} there exists a subset $A \in \mathcal{A}$ such that either $x \in A, y \notin A$ or $y \in A, x \notin A$.)

In the paper the following issues are discussed:

- asymptotic distribution of Y_{n} as $n \rightarrow \infty$, with estimation for the accuracy of approximation,
- a.s. limit distribution,
- a.s. asymptotic behaviour, Lévy classes.

1. Introduction

Definiton. Let Ω be an arbitrary nonempty set and $\mathcal{A} \subset 2^{\Omega}$ a family of its subsets. \mathcal{A} is said to separate Ω if for any two elements x, y of Ω there exists a subset $A \in \mathcal{A}$ such that either $x \in A, y \notin A$ or $y \in A, x \notin A$ holds.

Let Ω_{n} be a fixed set of size n. Select a sequence $A_{1}^{(n)}, A_{2}^{(n)}, \ldots$, of i.i.d. random subsets of Ω_{n} in such a way, that for each subset $A_{j}^{(n)}$ every element of Ω_{n} is picked independently and with the same probability p. Stop when they separate. Let Y_{n} denote the number of subsets selected. We are interested in the asymptotic properties of Y_{n} as $n \rightarrow \infty$. In order that a.s. investigations also make sense we need to define all Y_{n} in the same probability space.

Let ($X_{i j}, 1 \leq i, 1 \leq j$) a two-way infinite array of i.i.d. Bernoulli random variables with $P\left(X_{i j}=1\right)=p, P\left(X_{i j}=0\right)=1-p=q$. With every column we associate a random subset of positive integers as follows: $A_{j}=\left\{i \geq 1: X_{i j}=1\right\}, j \geq 1$, that is, $X_{i j}=I\left(i \in A_{j}\right)$. These subsets are independent and identically distributed. Let

[^0]us define $A_{j}^{(n)}$ as the starting section of $A_{j}: A_{j}^{(n)}=\{1,2, \ldots, n\} \cap A_{j}$. We consider the stopping times
$$
Y_{n}=\min \left\{k: A_{1}^{(n)}, A_{2}^{(n)}, \ldots, A_{k}^{(n)} \text { separate }\{1, \ldots, n\}\right\}, n \geq 1
$$
as well as the inverse quantities
$$
T_{k}=\min \left\{n: A_{1}^{(n)}, A_{2}^{(n)}, \ldots, A_{k}^{(n)} \text { do not separate }\{1, \ldots, n\}\right\}, k \geq 1
$$

If we focus on the first n rows, Y_{n} will show, how many columns are needed so that these rows become all different. If, instead of rows, we fix k columns, and take rows one after another while they are all different (up to the first k element), then T_{k} is the number of rows needed for the first repetition, that is, the smallest n for which the k-vectors

$$
\left[X_{11}, \ldots, X_{1 k}\right],\left[X_{21}, \ldots, X_{2 k}\right], \ldots,\left[X_{n 1}, \ldots, X_{n k}\right]
$$

are not all different.
Random variables Y_{n} and T_{k} are obviously in strong connection, for $\left\{Y_{n} \leq k\right\} \equiv$ $\left\{T_{k}>n\right\}$. There are problems that can be attacked more easily through T_{k}, while others may appear simpler if the Y_{n} are dealt with.

2. Asymptotic distribution

The second representation of T_{k} clearly shows that, as far as limit distribution is concerned, we face a particular case of the generalized birthday problem: i.i.d. random vectors of distribution $P(\boldsymbol{x})=p^{\sum x_{i}} q^{k-\sum x_{i}}, \boldsymbol{x} \in\{0,1\}^{k}$ are taken, one after another, until the first repetition. There exists a huge amount of literature on that problem, here we only mention two papers: the classical work [9], which contains a complete description of possible limit distributions in a more general setup, and a recent preprint [2], which offers a good survey of related results. From the classical theory it follows that T_{k}, multiplied by the factor

$$
\vartheta_{k}=\left(\sum_{\boldsymbol{x} \in\{0,1\}^{k}}\left(p^{\sum x_{i}} q^{k-\sum x_{i}}\right)^{2}\right)^{1 / 2}=\left(p^{2}+q^{2}\right)^{k / 2}
$$

converges in distribution: $P\left(\vartheta_{k} T_{k}>t\right) \rightarrow \exp \left(-t^{2} / 2\right), t>0$, as $k \rightarrow \infty$. For precise asymptotic analysis we shall also need an estimation for the rate of convergence. As we have already seen, $\left\{Y_{n} \leq k\right\}$ means that there are no two identical k-vectors among the first n rows. For $1 \leq i<j \leq n$ let $B_{i j}$ denote the event that row i is identical to row j (up to the first k element). We need the probability that none of the events $B_{i j}$ occur. Two powerful methods that can be applied with success in similar situations are the graph-sieve of Rényi (see [4]) and the Chen-Stein method of Poisson approximation [1]. They are not equally efficient. The ChenStein method, if applicable, usually gives more: a Poisson approximation for the number of occurring events, together with a very sharp estimation for the accuracy measured in total variation of probability distributions. If all events in question are dependent with a complicated dependency structure then the Rényi sieve still
works when the Chen-Stein method breaks down, see [5]. But when each event has a relatively small "dependency neighborhood" such that it is independent of all events outside of that, then the proper choice is the Chen-Stein method. This is the case just now: $B_{i j}$ is independent of all events $B_{\ell m}$ that have no indices in common with it.

Let us apply Theorem 1 of [1]. Introduce $H=\{(i, j): 1 \leq i<j \leq n\}$, $K_{i j}=\{(\ell, m) \in H:\{i, j\} \cap\{\ell, m\} \neq \emptyset\}$ (neighborhood of dependence), and finally

$$
\begin{aligned}
\lambda_{0} & =\sum_{(i, j) \in H} P\left(B_{i j}\right)=\binom{n}{2}\left(p^{2}+q^{2}\right)^{k}, \\
b_{1} & =\sum_{(i, j) \in H} \sum_{(\ell, m) \in K_{i j}} P\left(B_{i j}\right) P\left(B_{\ell m}\right)=\binom{n}{2}(2 n-1)\left(p^{2}+q^{2}\right)^{2 k}, \\
b_{2} & =\sum_{(i, j) \in H} \sum_{(i, j) \neq(\ell, m) \in K_{i j}} P\left(B_{i j} \cap B_{\ell m}\right)=n(n-1)^{2}\left(p^{3}+q^{3}\right)^{k} .
\end{aligned}
$$

Then we immediately obtain the following basic inequality.

$$
\begin{equation*}
\left|P\left(T_{k}>n\right)-e^{-\lambda_{0}}\right| \leq \frac{1-e^{-\lambda_{0}}}{\lambda_{0}}\left(b_{1}+b_{2}\right) . \tag{2.1}
\end{equation*}
$$

In order to formulate the main result of this section we shall need some more notations. Let

$$
\beta=\frac{\left(p^{2}+q^{2}\right)^{3 / 2}}{p^{3}+q^{3}}>1, \quad \gamma=\frac{p^{2}+q^{2}}{p^{3}+q^{3}} \leq \frac{1}{p^{2}+q^{2}}, \quad \lambda=\frac{1}{2} n^{2}\left(p^{2}+q^{2}\right)^{k}
$$

Let $F(x)=\exp \left(-\frac{1}{2}\left(p^{2}+q^{2}\right)^{x}\right), x \in \mathbb{R}$, this is the distribution function of an extreme value distribution from the location-scale family of Gumbel distributions. Define $\varrho_{i}(x)=F(i+x)-F(i+x-1)$, thus $\varrho(x)=\left(\varrho_{i}(x): i \in \mathbb{Z}\right)$ is a parametric family of discretized versions of distribution F. For sake of brevity let us denote the logarithm to the base $\left(p^{2}+q^{2}\right)^{-1}$ by Log (while log will be reserved for natural logarithm). Let α and N denote the fractional and integer parts of $2 \log n$, resp. Finally, introduce $\pi_{i}(n)=P\left(Y_{n}=N+i\right)$.

Theorem 2.1.

$$
\begin{gather*}
\left|P\left(Y_{n} \leq k\right)-e^{-\lambda}\right| \leq 4 n \gamma^{-k} \tag{2.2}\\
\|\boldsymbol{\pi}(n)-\varrho(-\alpha)\|=O\left(\frac{(\log n)^{\log \gamma}}{n^{2 \log \gamma-1}}\right)=o\left(n^{-3 p q / 2}\right), \tag{2.3}
\end{gather*}
$$

where $\|$.$\| stands for total variation,$

$$
\begin{equation*}
\sup _{x}\left|P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k}>x\right)-\exp \left(-\frac{1}{2} x^{2}\right)\right|=O\left(\frac{\sqrt{k}}{\beta^{k}}\right) . \tag{2.4}
\end{equation*}
$$

Proof. From (2.1) it follows that

$$
\begin{aligned}
\left|P\left(Y_{n} \leq k\right)-e^{-\lambda_{0}}\right| & \leq 2 n\left(\left(p^{2}+q^{2}\right)^{k}+\gamma^{-k}\right)\left(1-e^{-\lambda_{0}}\right) \\
& \leq 4 n \gamma^{-k}\left(1-e^{-\lambda_{0}}\right) .
\end{aligned}
$$

This, together with the inequality

$$
\left|e^{-\lambda_{0}}-e^{-\lambda}\right| \leq e^{-\lambda_{0}}\left(1-\exp \left(-\frac{n}{2}\left(p^{2}+q^{2}\right)^{k}\right)\right) \leq e^{-\lambda_{0}} \frac{n}{2}\left(p^{2}+q^{2}\right)^{k} \leq \frac{n}{2} \gamma^{-k} e^{-\lambda_{0}}
$$

gives (2.2).
For the proof of (2.3) let $k=N+i$, then $\gamma^{k}=\gamma^{2 \log n+i-\alpha}=n^{2 \log \gamma} \gamma^{i-\alpha}$, and

$$
\lambda=\frac{1}{2} n^{2}\left(p^{2}+q^{2}\right)^{k}=\frac{1}{2}\left(p^{2}+q^{2}\right)^{N+i-2 \log n}=\frac{1}{2}\left(p^{2}+q^{2}\right)^{i-\alpha}
$$

thus $e^{-\lambda}=F(i-\alpha)$. Hence, with an arbitrarily fixed i_{0} we can write

$$
\begin{align*}
\|\boldsymbol{\pi}(n)-\boldsymbol{\varrho}(-\alpha)\| & =\sum_{i \in \mathbb{Z}}\left|\varrho_{i}(-\alpha)-\pi_{i}(n)\right|=2 \sum_{i \in \mathbb{Z}}\left(\varrho_{i}(-\alpha)-\pi_{i}(n)\right)^{+} \\
& \leq 2 \sum_{i>i_{0}}\left|\varrho_{i}(-\alpha)-\pi_{i}(n)\right|+2 \sum_{i \leq i_{0}} \varrho_{i}(-\alpha) \\
& \leq 4 \sum_{i \geq i_{0}}\left|P\left(Y_{n} \leq N+i\right)-F(i-\alpha)\right|+2 F\left(i_{0}-\alpha\right) \\
& \leq 16 n \sum_{i \geq i_{0}} \gamma^{-(N+i)}+2 F\left(i_{0}-\alpha\right) \\
& =16 n\left(1-\frac{1}{\gamma}\right)^{-1} \gamma^{-\left(N+i_{0}\right)}+2 F\left(i_{0}-\alpha\right) \\
& =\frac{16 \gamma}{\gamma-1} n^{1-2 \log \gamma} \gamma^{-\left(i_{0}-\alpha\right)}+2 F\left(i_{0}-\alpha\right) \tag{2.5}
\end{align*}
$$

Let $\delta=2 \log \gamma-1>0$ and i_{0} such that

$$
n^{-\delta /\left(p^{2}+q^{2}\right)}<F\left(i_{0}-\alpha\right) \leq n^{-\delta}
$$

Such an i_{0} does exist, because $F(x+1)=F(x)^{p^{2}+q^{2}}$. Since $F\left(i_{0}+1-\alpha\right)>n^{-\delta}$, it follows that $i_{0}+1-\alpha>\log (2 \delta \log n)$, thus

$$
\gamma^{-i_{0}-\alpha}<\gamma(2 \delta \log n)^{\log \gamma}
$$

Plugging this in (2.5) we obtain the first equality of (2.3).
For the second equality of (2.3) we need to estimate $2 \log \gamma-1$. Since $p^{2}+q^{2}=$ $1-2 p q$ and $p^{3}+q^{3}=1-3 p q$, we can write

$$
2 \log \gamma-1=2 \frac{\log (1-3 p q)}{\log (1-2 p q)}-3=3\left(\frac{\int_{0}^{p q} \frac{d t}{1-3 t}}{\int_{0}^{p q} \frac{d t}{1-2 t}}-1\right)
$$

Here

$$
\begin{gathered}
\frac{1}{p q} \int_{0}^{p q} \frac{d t}{1-3 t}>\frac{1}{p q} \int_{0}^{p q} \frac{1+t}{1-2 t} d t>\frac{1}{p q} \int_{0}^{p q}(1+t) d t \frac{1}{p q} \int_{0}^{p q} \frac{d t}{1-2 t} \\
=\frac{1}{p q}\left(1+\frac{p q}{2}\right) \int_{0}^{p q} \frac{d t}{1-2 t}
\end{gathered}
$$

consequently, $2 \log \gamma-1>\frac{3}{2} p q$.
Finally, let x be a fixed positive number, and $n=\left[x\left(p^{2}+q^{2}\right)^{-k / 2}\right]$. Then

$$
P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k}>x\right)=P\left(T_{k}>n\right)=P\left(Y_{n} \leq k\right)
$$

and from (2.2) we have

$$
\left|P\left(Y_{n} \leq k\right)-\exp \left(-\frac{1}{2} n^{2}\left(p^{2}+q^{2}\right)^{k}\right)\right| \leq 4 n \gamma^{-k} \leq 4 x \beta^{-k}
$$

On the other hand, $0 \leq x^{2}-n^{2}\left(p^{2}+q^{2}\right)^{k} \leq 2 x\left(p^{2}+q^{2}\right)^{k / 2}$, which implies

$$
\begin{gathered}
0 \leq \exp \left(-\frac{1}{2} n^{2}\left(p^{2}+q^{2}\right)^{k}\right)-\exp \left(-\frac{1}{2} x^{2}\right) \leq 1-\exp \left(-x\left(p^{2}+q^{2}\right)^{k / 2}\right) \\
\leq x\left(p^{2}+q^{2}\right)^{k / 2} \leq x \beta^{-k}
\end{gathered}
$$

Hence, for $x \leq x_{0}=\sqrt{2 k \log \beta}$ we have

$$
\left|P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k}>x\right)-\exp \left(-\frac{1}{2} x^{2}\right)\right| \leq 5 x_{0} \beta^{-k}=O\left(\frac{\sqrt{k}}{\beta^{k}}\right)
$$

while for $x>x_{0}$

$$
\begin{aligned}
\mid P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k}\right. & >x) \left.-\exp \left(-\frac{1}{2} x^{2}\right) \right\rvert\, \leq \\
& \leq P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k}>x_{0}\right) \vee \exp \left(-\frac{1}{2} x_{0}^{2}\right)=O\left(\frac{\sqrt{k}}{\beta^{k}}\right)
\end{aligned}
$$

3. A.s. limit distribution

From (2.3) it is clear that $Y_{n}-[\log n]$ is stochastically bounded, but does not have a limit distribution as $n \rightarrow \infty$, because of the logarithmic periodicity appearing in the asymptotic distribution. This is not just a matter of centering, no other centering sequence could made T_{n} converge in distribution.

Similar periodicity appears in the asymptotic distribution of random variables inverse to other sequences of waiting times that increase at an exponential rate, see [7]. A typical example is the length of the longest head-run observed during n tosses of a coin. However, in each of those examples the existence of an a.s. limit distribution can be proved.

A sequence of random variables ζ_{n} is said to have a.s. limit distribution, if for every real x

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{\log t} \sum_{n=1}^{t} \frac{1}{n} I\left(\zeta_{n} \leq x\right)=G(x) \quad \text { a.s. } \tag{3.1}
\end{equation*}
$$

with some non-degenerate distribution function $G(x)$. Under quite general conditions, (3.1) holds if and only if the sequence of probabilities $P\left(\zeta_{n} \leq x\right)$ is logarithmically summable to $G(x)$. This "transfer principle" is supported by the following simple lemma.

Lemma 3.1. [6] Let ξ_{1}, ξ_{2}, \ldots be a sequence of uniformly bounded random variables $\left(\right.$ e.g. $\left.\xi_{n}=I\left(\zeta_{n} \leq x\right)-P\left(\zeta_{n} \leq x\right)\right)$, such that $\left|E\left(\xi_{i} \xi_{j}\right)\right| \leq h(j / i), 1 \leq i<j$, where h is a positive decreasing function, and

$$
\int_{1}^{\infty} \frac{h(x)}{x \log x} d x \leq \infty
$$

Then

$$
\lim _{t \rightarrow \infty} \frac{1}{\log t} \sum_{n=1}^{t} \frac{1}{n} \xi_{n}=0 \quad \text { a.s. }
$$

Since logarithmic averaging can eliminate periodicity, a.s. limit distribution may exist even when ordinary limit distribution does not.

In order to apply Lemma 3.1 we first have to estimate $P\left(Y_{n} \leq k, Y_{s} \leq r\right)=$ $P\left(T_{k}>n, T_{r}>s\right), k \leq r, n \leq s$. Such an estimation will be useful in Section 4, so calculation will be carried out in a little bit more general setup than it is necessary here. The method we are going to apply is the Chen-Stein approximation for the conditional distribution

$$
P\left(T_{r}>s \mid X_{i j}, i \leq n, j \leq k\right)
$$

For sake of brevity, let $\mathcal{F}=\sigma\left\{X_{i j}: i \leq n, j \leq k_{1}\right\}$ and let \mathcal{H} denote the set of those pairs $(i, j), 1 \leq i<j \leq n$, that are not separated by $A_{1}^{(n)}, \ldots, A_{k}^{(n)}$, that is, $\left[X_{i 1}, \ldots, X_{i k}\right] \equiv\left[X_{j 1}, \ldots, X_{j k}\right]$.

$$
\mathcal{H}=\left\{(i, j): 1 \leq i<j \leq n, B_{i j} \text { occurs }\right\} .
$$

Further, let $S_{i}=X_{i 1}+\cdots+X_{i k}, 1 \leq i \leq n$, they are i.i.d. random variables.
By Theorem 1 of [1], $P\left(T_{r}>s \mid \mathcal{F}\right)$ is approximately equal to $e^{-\mu}$, where

$$
\begin{aligned}
\mu & =\sum_{1 \leq i<j \leq s} P\left(B_{i j} \mid \mathcal{F}\right)=\sum_{1 \leq i<j \leq n}+\sum_{n<i<j \leq s}+\sum_{1 \leq i \leq n<j \leq s} \\
& =\left(p^{2}+q^{2}\right)^{r-k}|\mathcal{H}|+\binom{s-n}{2}\left(p^{2}+q^{2}\right)^{r}+\left(p^{2}+q^{2}\right)^{r-k} \sum_{i=1}^{n} p^{S_{i}} q^{k-S_{i}} .
\end{aligned}
$$

The approximation error is majorized again by

$$
\begin{equation*}
\left.\sum_{\{i, j\} \cap\{\ell, m\} \neq \emptyset} P\left(B_{i j} \mid \mathcal{F}\right) P\left(B_{\ell m} \mid \mathcal{F}\right)+\sum_{\substack{\{i, j\} \cap\{\ell, m\} \neq \emptyset \\(i, j) \neq(\ell, m)}} P\left(B_{i j} \cap B_{\ell m} \mid \mathcal{F}\right)\right) \tag{3.2}
\end{equation*}
$$

Let us estimate the sums of (3.2) on the event $\left\{Y_{n} \leq k\right\}=\{\mathcal{H}=\emptyset\} \in \mathcal{F}$. In the second sum $|\{i, j, \ell, m\}|=3$, and $\{i, j, \ell, m\} \cap\{1, \ldots, n\} \leq 1$. Obviously, on \mathcal{H} $|\{1, \ldots, n\} \cap\{i, j, \ell, m\}|>1$ cannot happen, because $B_{i j} \cap B_{\ell m}$ means that neither pair from $\{i, j, \ell, m\}$ is separated. Thus the second sum will be divided into two parts.

Case (a): $n<i$, and $n<\ell$. The summands are all equal to $\left(p^{3}+q^{3}\right)^{r}$, and there are $6\binom{s-n}{3}$ of them.

Case (b): either $i \leq n$ or $\ell \leq n$. The summands are of the form

$$
p^{2 S_{t}} q^{2\left(k-S_{t}\right)}\left(p^{3}+q^{3}\right)^{r-k}
$$

where $t=i \wedge \ell$, and there are $6\binom{s-n}{2}$ of each.
Thus the second sum in (3.2) is estimated by

$$
\begin{equation*}
s^{3}\left(p^{3}+q^{3}\right)^{r}+3 s^{2}\left(p^{3}+q^{3}\right)^{r-k} \sum_{t=1}^{n} p^{2 S_{t}} q^{2\left(k-S_{t}\right)} \tag{3.3}
\end{equation*}
$$

As regards the first sum, we distinguish two (not disjoint) cases according as $t \in\{i, j\} \cap\{\ell, m\}$ falls below or above n (in fact, the two pairs may coincide, then t is not unique).

Case (a): $t \leq n$. The contribution of those terms is

$$
\left((s-n) p^{S_{t}} q^{k-S_{t}}\left(p^{2}+q^{2}\right)^{r-k}\right)^{2}
$$

Case (b): $n<t$. The contribution of those terms is

$$
\begin{aligned}
&\left(\sum_{i=1}^{n} p^{S_{i}} q^{k-S_{i}}\left(p^{2}+q^{2}\right)^{r-k}+(s-n-1)\left(p^{2}+q^{2}\right)^{r}\right)^{2} \leq \\
& \leq 2\left(p^{2}+q^{2}\right)^{2(r-k)}\left(\sum_{i=1}^{n} p^{S_{i}} q^{k-S_{i}}\right)^{2}+2 s^{2}\left(p^{2}+q^{2}\right)^{2 r}
\end{aligned}
$$

Thus the first sum in (3.2) is estimated by

$$
\begin{align*}
2 s^{3}\left(p^{2}+q^{2}\right)^{2 r}+s^{2}\left(p^{2}+q^{2}\right)^{2(r-k)} & \sum_{r=1}^{n} p^{2 S_{r}} q^{2\left(k-S_{r}\right)}+ \\
+ & 2 s\left(p^{2}+q^{2}\right)^{2(r-k)}\left(\sum_{i=1}^{n} p^{S_{i}} q^{k-S_{i}}\right)^{2} \tag{3.4}
\end{align*}
$$

By using (3.3), (3.4), and inequality $\left(p^{2}+q^{2}\right)^{2} \leq p^{3}+q^{3}$ we obtain the following estimation for the approximation error,

$$
3 s^{3}\left(p^{3}+q^{3}\right)^{r}+2 s\left(p^{3}+q^{3}\right)^{r-k} \Sigma_{1}^{2}+4 s^{2}\left(p^{3}+q^{3}\right)^{r-k} \Sigma_{2}
$$

where

$$
\Sigma_{1}=\sum_{i=1}^{n} p^{S_{i}} q^{k-S_{i}}, \quad \Sigma_{2}=\sum_{i=1}^{n} p^{2 S_{i}} q^{2\left(k-S_{i}\right)}
$$

Let us introduce the event

$$
D_{k n}=\left\{\sum_{i=1}^{n} p^{S_{i}} q^{k-S_{i}} \leq k^{3}\left(p^{2}+q^{2}\right)^{k}, \sum_{i=1}^{n} p^{2 S_{i}} q^{2\left(k-S_{i}\right)} \leq k^{3}\left(p^{3}+q^{3}\right)^{k}\right\}
$$

The distribution of S_{i} is binomial, so it is easy to see that

$$
E\left(p^{S_{i}} q^{k-S_{i}}\right)=\left(p^{2}+q^{2}\right)^{k}, \quad E\left(p^{2 S_{i}} q^{2\left(k-S_{i}\right)}\right)=\left(p^{3}+q^{3}\right)^{k}
$$

hence by the Markov inequality $P\left(\bar{D}_{k n}\right) \leq 2 k^{-3}$.
On $D_{k n} \cap\left\{Y_{n} \leq k\right\}$ we have

$$
\begin{equation*}
\binom{s-n}{2}\left(p^{2}+q^{2}\right)^{r} \leq \mu \leq\left(\binom{s-n}{2}+k^{3} n\right)\left(p^{2}+q^{2}\right)^{r} \tag{3.5}
\end{equation*}
$$

and the approximation error can be estimated by

$$
s^{3}\left(p^{3}+q^{3}\right)^{r}\left(3+2 k^{6}+4 k^{3}\right) \leq 9 s^{3}\left(p^{2}+q^{2}\right)^{r} k^{6} \gamma^{-r}
$$

Putting all these together we obtain the following estimation.
Lemma 3.2. Let $C_{k n}=\left\{T_{k}>n\right\} \cap D_{k n}$. Then

$$
\begin{aligned}
\mid P\left(C_{k n} \cap C_{r s}\right) & -P\left(C_{k n}\right) P\left(C_{r s}\right) \left\lvert\, \leq \frac{n s}{(s-n)^{2}} P\left(C_{k n}\right)+\right. \\
& +\left(s+k^{3} n\right)\left(p^{2}+q^{2}\right)^{r}+4 s \gamma^{-r}+9 s^{3}\left(p^{2}+q^{2}\right)^{r} k^{6} \gamma^{-r}+4 r^{-3}
\end{aligned}
$$

Proof. Let us start from inequality

$$
\begin{aligned}
\mid P\left(C_{k n} \cap C_{r s}\right) & -P\left(C_{k n}\right) P\left(C_{r s}\right)\left|\leq\left|P\left(C_{k n} \cap C_{r s}\right)-P\left(C_{k n} \cap\left\{T_{r}>s\right\}\right)\right|+\right. \\
& +\left|P\left(C_{k n} \cap\left\{T_{r}>s\right\}\right)-P\left(C_{k n}\right) e^{-\mu}\right|+\left|e^{-\mu}-e^{-\lambda}\right| P\left(C_{k n}\right)+ \\
& +\left|e^{-\lambda}-P\left(C_{r s}\right)\right| P\left(C_{k n}\right),
\end{aligned}
$$

where $\lambda=\frac{1}{2} s^{2}\left(p^{2}+q^{2}\right)^{r}$, and

$$
\left|\mu-\frac{1}{2}(s-n)^{2}\left(p^{2}+q^{2}\right)^{r}\right| \leq\left(s+k^{3} n\right)\left(p^{2}+q^{2}\right)^{r}
$$

by (3.5). Terms in the right-hand side will be estimated separately. Firstly,

$$
\left|P\left(C_{k n} \cap\left\{T_{r}>s\right\}\right)-P\left(C_{k n} \cap C_{r s}\right)\right| \leq P\left(\bar{D}_{r s}\right) \leq 2 r^{-3} .
$$

Let us integrate $P\left(T_{r}>s \mid \mathcal{F}\right)$ on the event $C_{k n}$. There we have

$$
\left|P\left(T_{r}>s \mid \mathcal{F}\right)-e^{-\mu}\right| \leq 9 s^{3}\left(p^{2}+q^{2}\right)^{r} k^{6} \gamma^{-r}
$$

hence the same upper bound holds for $\left|P\left(C_{k n} \cap\left\{T_{r}>s\right\}\right)-P\left(C_{k n}\right) e^{-\mu}\right|$. Let η denote $\left(1-\frac{n}{s}\right)^{2}$, then in the next term

$$
\begin{aligned}
\left|e^{-\mu}-e^{-\lambda}\right| & \leq e^{-\lambda \eta}-e^{-\lambda}+\left|e^{-\mu}-e^{-\lambda \eta}\right| \\
& \leq e^{-\lambda \eta} \lambda(1-\eta)+\left(s+k^{3} n\right)\left(p^{2}+q^{2}\right)^{r} \\
& \leq \frac{1}{e \eta} \cdot \frac{2 n}{s}+\left(s+k^{3} n\right)\left(p^{2}+q^{2}\right)^{r} \\
& \leq \frac{n s}{(s-n)^{2}}+\left(s+k^{3} n\right)\left(p^{2}+q^{2}\right)^{r}
\end{aligned}
$$

Finally, from (2.2) it follows that

$$
\left|e^{-\lambda}-P\left(C_{r s}\right)\right| \leq 4 s \gamma^{-r}+2 r^{-3}
$$

From all these we get just what we need.
Now we are in a position to prove the main result of this section.

Theorem 3.1. With probability 1

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \frac{1}{\log t} \sum_{n=1}^{t} \frac{1}{n} I\left(Y_{n}-[2 \log n]=i\right)=\int_{0}^{1}(F(i-y)-F(i-1-y)) d y, \quad i \in \mathbb{Z} \\
\lim _{t \rightarrow \infty} \frac{1}{\log t} \sum_{n=1}^{t} \frac{1}{n} I\left(Y_{n}-2 \log n \leq x\right)=\int_{0}^{1} F(x-y) d y, \quad x \in \mathbb{R}
\end{gathered}
$$

Proof. We will only prove the first limit relation. The case where the centering sequence is $2 \log n$ can be treated similarly, and therefore it will be omitted.

Let $k=[2 \log n]+i$ and $C_{n}=\left\{Y_{n} \leq k\right\} \cap D_{k n}$. We will use Lemma 3.1 with $\xi_{n}=I\left(C_{n}\right)-P\left(C_{n}\right)$, thus we need to estimate the covariances $E\left(\xi_{n} \xi_{s}\right)=$ $P\left(C_{n} \cap C_{s}\right)-P\left(C_{n}\right) P\left(C_{s}\right), 1 \leq n<s$. Let $r=[2 \log s]+i \geq k$, then $s \gamma^{-r}=$ $O\left(\beta^{-r}\right), s^{2}\left(p^{2}+q^{2}\right)^{r}=O(1)$, and from Lemma 3.2 it is clear that

$$
\left|P\left(C_{n} \cap C_{s}\right)-P\left(C_{n}\right) P\left(C_{s}\right)\right|=O\left(\frac{n}{s}+\frac{1}{\log ^{3} s}\right)
$$

as n and $s-n$ tend to infinity, thus $h(x)=O\left((\log x)^{-3}\right)$ will do. Since $P\left(C_{n}\right) \sim$ $F(i-\alpha)$, Lemma 3.1 implies

$$
\lim _{t \rightarrow \infty} \frac{1}{\log t} \sum_{n=1}^{t} \frac{1}{n} I\left(C_{n}\right)=\lim _{t \rightarrow \infty} \frac{1}{\log t} \sum_{n=1}^{t} \frac{1}{n} F(i-\alpha)
$$

Let the value of N be fixed; it means that n falls between $h_{1}=\left(p^{2}+q^{2}\right)^{-N / 2}$ and $h_{2}=\left(p^{2}+q^{2}\right)^{-(N+1) / 2}$. The contribution of such terms to the logarithmic sum is

$$
\sum_{h_{1} \leq n<h_{2}} \frac{1}{n} F(i-\alpha) \sim \int_{h_{1}}^{h_{2}} \frac{1}{x} F(i-2 \log x) d x
$$

By substitution $y=2 \log x-N$ this integral is transformed into

$$
-\frac{1}{2} \log \left(p^{2}+q^{2}\right) \int_{0}^{1} F(i-y) d y
$$

hence we obtain that

$$
\lim _{t \rightarrow \infty} \frac{1}{\log t} \sum_{n=1}^{t} \frac{1}{n} I\left(C_{n}\right)=\int_{0}^{1} F(i-y) d y
$$

In order to complete the proof of the first relation of Theorem 3.1 it suffices to note that

$$
E\left(\sum_{n=1}^{\infty} \frac{1}{n} I\left(D_{k n}\right)\right) \leq \sum_{n=1}^{\infty} \frac{2}{n k^{3}}<\infty
$$

for here

$$
\frac{1}{n k^{3}}=O\left(\frac{1}{n \log ^{3} n}\right)
$$

Consequently, with probability 1 ,

$$
\lim _{t \rightarrow \infty} \frac{1}{\log t} \sum_{n=1}^{t} \frac{1}{n}\left(I\left(T_{n}-[2 \log n] \leq i\right)-I\left(C_{n}\right)\right) \leq \lim _{t \rightarrow \infty} \frac{1}{\log t} \sum_{n=1}^{t} \frac{1}{n} I\left(D_{k n}\right)=0
$$

4. LÉvy Classes

For the definiton of Lévy classes UUC, ULC, LUC, LLC see Chapter 5 of [8]. The a.s. asymptotic behaviour of the sequence Y_{n} is better to study through the inverse sequence T_{k}. First we deal with the upper classes.

Theorem 4.1 (UUC/ULC of T_{k}). Let ψ be a positive increasing function. The probability that $\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \geq \psi(k)$ holds for infinitely many k is equal to 0 or 1, according as the sum

$$
\begin{equation*}
\sum_{k=1}^{\infty} \exp \left(-\frac{1}{2} \psi(k)^{2}\right) \tag{4.1}
\end{equation*}
$$

is finite or infinite.
Proof. Suppose (4.1) is finite. Then $P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \geq \psi(k)\right) \sim \exp \left(-\frac{1}{2} \psi(k)^{2}\right)$, by (2.4), thus

$$
\sum_{k=1}^{\infty} P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \geq \psi(k)\right)<\infty
$$

The Borel-Cantelli lemma implies that $\psi(k)$ belongs to the upper-upper class of the sequence $\left(p^{2}+q^{2}\right)^{k / 2} T_{k}$.

Conversely, assume (4.1) is infinite. We may suppose that $\psi(k) \leq 2(\log k)^{1 / 2}$, or else we can replace $\psi(k)$ with $\psi^{\prime}(k)=\psi(k) \wedge 2(\log k)^{1 / 2}$. In this way (4.1) remains infinite, and $\psi(k)$ belongs to the lower-upper class if and only if so does $\psi^{\prime}(k)$, because $\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \geq 2(\log k)^{1 / 2}$ cannot occur for sufficiently large k. We may also assume that $\psi(k) \rightarrow \infty$, otherwise $\lim \sup P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \geq \psi(k)\right)$ would be positive, which, combined with the 0 or 1 law of Halmos and Savage, would give that $\psi(k) \in$ LUC.

Let $n=n(k)=\left\lceil\left(p^{2}+q^{2}\right)^{-k / 2} \psi(k)\right\rceil-1$, that is, $\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \geq \psi(k)$ if and only if $T_{k}>n$.

This time let $C_{k}=C_{k, n(k)}=\left\{T_{k}>n\right\} \cap D_{k, n(k)}$, then $P\left(C_{k}\right) \sim \exp \left(-\frac{1}{2} \psi(k)^{2}\right)$ again. We will apply the Erdős-Rényi generalization of the Borel-Cantelli lemma (see [3]) to the events C_{k}. To this end we need an upper estimation for the expression

$$
\sigma_{M}^{2}:=\sum_{k=1}^{M} \sum_{r=1}^{M}\left(P\left(C_{k} \cap C_{r}\right)-P\left(C_{k}\right) P\left(C_{r}\right)\right)
$$

Let us apply Lemma 3.2 with $r>k$ and $s=n(r) \leq n(k)$. By supposition,

$$
\begin{equation*}
n^{2}\left(p^{2}+q^{2}\right)^{k} \leq 4 \log k, \quad s^{2}\left(p^{2}+q^{2}\right)^{r} \leq 4 \log r \tag{4.2}
\end{equation*}
$$

hence

$$
\begin{aligned}
& \left|P\left(C_{k} \cap C_{r}\right)-P\left(C_{k}\right) P\left(C_{r}\right)\right| \leq \frac{n s}{(s-n)^{2}} P\left(C_{k}\right)+ \\
& \quad+4 k^{3}(\log r)^{1 / 2}\left(p^{2}+q^{2}\right)^{r / 2}+8(\log r)^{1 / 2} \beta^{-r}+72 k^{6}(\log r)^{3 / 2} \beta^{-r}+4 r^{-3}
\end{aligned}
$$

Here

$$
\frac{n s}{(s-n)^{2}}=\frac{n}{s}\left(1-\frac{n}{s}\right)^{-2}, \quad \frac{n}{s}=\left(p^{2}+q^{2}\right)^{(r-k) / 2}+O\left(\left(p^{2}+q^{2}\right)^{-r}\right)
$$

from which it follows that

$$
\begin{aligned}
\sigma_{M}^{2} & \leq \sum_{k=1}^{M} P\left(C_{k}\right)+2 \sum_{1 \leq k<r \leq M}\left|P\left(C_{k} \cap C_{r}\right)-P\left(C_{k}\right) P\left(C_{r}\right)\right| \\
& \leq \sum_{k=1}^{M} P\left(C_{k}\right)+2 \sum_{1 \leq k<r \leq M} P\left(C_{k}\right) \frac{n s}{(s-n)^{2}}+O(1) \\
& =\sum_{k=1}^{M} P\left(C_{k}\right)+O\left(\sum_{1 \leq k<r \leq M} P\left(C_{k}\right)\left(p^{2}+q^{2}\right)^{(r-k) / 2}\right) \\
& =\sum_{k=1}^{M} P\left(C_{k}\right)+O\left(\sum_{\ell=1}^{M-1}\left(p^{2}+q^{2}\right)^{\ell / 2} \sum_{k=1}^{M-\ell} P\left(C_{k}\right)\right) \\
& =O\left(\sum_{k=1}^{M} P\left(C_{k}\right)\right) .
\end{aligned}
$$

The Erdős-Rényi lemma implies that, with probability 1, infinitely many of the events C_{k} occur. Since $\sum P\left(\bar{D}_{k, n(k)}\right)<\infty, D_{k, n(k)}$ occurs for every k large enough, thus $\psi(k) \in \mathrm{LUC}$, indeed.
Theorem $4.2\left(\mathrm{LUC} / \mathrm{LLC}\right.$ of $\left.T_{k}\right)$. Let ψ be a positive decreasing function, for which $\left(p^{2}+q^{2}\right)^{-k / 2} \psi(k)$ increases. The probability that $\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \leq \psi(k)$ holds for infinitely many k is equal to 0 or 1 , according as the sum

$$
\begin{equation*}
\sum_{k=1}^{\infty} \psi(k)^{2} \tag{4.3}
\end{equation*}
$$

is finite or infinite.
Proof. The proof goes along the same lines as that of Theorem 4.1. When (4.3) is finite, then $P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \leq \psi(k)\right) \sim \frac{1}{2} \psi(k)^{2}$, hence the LLC result follows from the ordinary Borel-Cantelli lemma.

When (4.3) is infinite, we can suppose that $P\left(\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \leq \psi(k)\right) \rightarrow 0$, that is, $\psi(k) \rightarrow 0$. We can confine ourselves to the case $1 / k<\psi(k)$ without loss of generality. Let $n=n(k)=\left[\left(p^{2}+q^{2}\right)^{-k / 2} \psi(k)\right]$, and $C_{k}=\left\{T_{k}>n\right\} \cap D_{k, n}$. Again, the Erdős-Rényi lemma will be applied, but this time to the events \bar{C}_{k}. Note that (4.2) is replaced with inequality $n\left(p^{2}+q^{2}\right)^{k / 2} \geq 1 / k$.

For the estimation of

$$
\begin{aligned}
\sigma_{M}^{2} & =\sum_{k=1}^{M} \sum_{r=1}^{M}\left(P\left(\bar{C}_{k} \cap \bar{C}_{r}\right)-P\left(\bar{C}_{k}\right) P\left(\bar{C}_{r}\right)\right) \\
& =\sum_{k=1}^{M} \sum_{r=1}^{M}\left(P\left(C_{k} \cap C_{r}\right)-P\left(C_{k}\right) P\left(C_{r}\right)\right)
\end{aligned}
$$

it is sufficient to deal with $\left|P\left(C_{k} \cap C_{r}\right)-P\left(C_{k}\right) P\left(C_{r}\right)\right|$ again, but Lemma 3.2 has to be replaced with another, very similar result, namely

$$
\begin{aligned}
\mid P\left(C_{k n} \cap C_{r s}\right) & -P\left(C_{k n}\right) P\left(C_{r s}\right) \mid \leq n s\left(p^{2}+q^{2}\right)^{r}+ \\
& +\left(s+k^{3} n\right)\left(p^{2}+q^{2}\right)^{r}+4 s \gamma^{-r}+9 s^{3}\left(p^{2}+q^{2}\right)^{r} k^{6} \gamma^{-r}+4 r^{-3} .
\end{aligned}
$$

The only difference is in the estimation of $e^{-\lambda \eta}-e^{-\lambda}$. Clearly,

$$
\begin{aligned}
e^{-\lambda \eta}-e^{-\lambda} & =\left(1-\left(1-e^{-\lambda}\right)\right)^{\eta}-e^{-\lambda} \leq 1-\eta\left(1-e^{-\lambda}\right)-e^{-\lambda} \\
& =(1-\eta)\left(1-e^{-\lambda}\right) \leq \frac{2 n}{s} \lambda=n s\left(p^{2}+q^{2}\right)^{r}
\end{aligned}
$$

Here

$$
n s\left(p^{2}+q^{2}\right)^{r} \leq \psi(k)^{2}\left(p^{2}+q^{2}\right)^{(r-k) / 2}
$$

therefore we can write

$$
\begin{aligned}
\sigma_{M}^{2} & \leq \sum_{k=1}^{M} P\left(\bar{C}_{k}\right)+2 \sum_{1 \leq k<r \leq M}\left|P\left(C_{k} \cap C_{r}\right)-P\left(C_{k}\right) P\left(C_{r}\right)\right| \\
& \leq \sum_{k=1}^{M} P\left(\bar{C}_{k}\right)+2 \sum_{1 \leq k<r \leq M} \psi(k)^{2}\left(p^{2}+q^{2}\right)^{(r-k) / 2}+O(1) \\
& =O\left(\sum_{k=1}^{M} P\left(\bar{C}_{k}\right)\right)
\end{aligned}
$$

completing the proof.
Remark. A sequence x_{i} of real numbers is called quasi-increasing (quasi-decreasing, resp.), if the supremum (infimum) of the set of differences $\left\{x_{i}-x_{j}: 1 \leq i<j\right\}$ is finite. From the proofs it can be seen that the sequence $\psi(k)$ in Theorems 4.1 and 4.2 need not be monotone: it is sufficient to require that $\left(p^{2}+q^{2}\right)^{-k / 2} \psi(k)$ increases and

- (in Theorem 4.1) $\log \psi(k)$ is quasi-increasing,
- (in Theorem 4.2) $\log \psi(k)$ is quasi-decreasing.

Finally, we adapt our results to the sequence Y_{n}.
Theorem 4.3 (UUC/ULC of Y_{n}). Let $k(n)$ be a a non-decreasing sequence of positive integers, for which $k(n)-2 \log n$ is quasi-increasing. The probability that $Y_{n} \geq k(n)$ holds for infinitely many n is equal to 0 or 1 , according as the sum

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left(p^{2}+q^{2}\right)^{k(n)} \tag{4.4}
\end{equation*}
$$

is finite or infinite.
Proof. Let $n(k)=\min \{n: k(n)=k\}$, i.e., $k(n)=k$ for $n(k) \leq n<n(k+1)$. Define $\psi(k)=\left(p^{2}+q^{2}\right)^{k / 2}(n(k+2)-1)$, then $\log \psi(k)$ is quasi-decreasing. Obviously,
$Y_{n} \geq k(n) \Leftrightarrow T_{k(n)-1} \leq n$, thus $Y_{n} \geq k(n)$ holds for infinitely many n if and only if $T_{k} \leq n(k+2)-1$, that is, $\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \geq \psi(k)$ for infinitely many k. We shall prove that (4.3) and (4.4) are equiconvergent.

Since

$$
\begin{aligned}
\frac{1}{4}\left(n(k+1)^{2}-n(k)^{2}\right)\left(p^{2}+q^{2}\right)^{k} & \leq \sum_{n=n(k)}^{n(k+1)-1} n\left(p^{2}+q^{2}\right)^{k(n)} \\
& \leq \frac{1}{2}\left(n(k+1)^{2}-n(k)^{2}\right)\left(p^{2}+q^{2}\right)^{k}
\end{aligned}
$$

we obtain, on one hand, that

$$
\begin{aligned}
\sum_{n=1}^{\infty} n\left(p^{2}+q^{2}\right)^{k(n)} & \geq \frac{1}{4} \sum_{k=k(1)}^{\infty} n(k)^{2}\left(\left(p^{2}+q^{2}\right)^{k-1}-\left(p^{2}+q^{2}\right)^{k}\right)-n(1)^{2} \\
& \geq \frac{p q}{4} \sum_{k=k(1)}^{\infty} \psi(k)^{2}-n(1)^{2}
\end{aligned}
$$

thus the finiteness of (4.4) implies that of (4.3).
On the other hand, if $n(k)^{2}\left(p^{2}+q^{2}\right)^{k} \rightarrow 0$, that is, $\psi(k) \rightarrow 0$, then

$$
\begin{aligned}
\sum_{n=n(k(1)+2)}^{\infty} n\left(p^{2}+q^{2}\right)^{k(n)} & \leq \frac{1}{2} \sum_{k=k(1)+2}^{\infty} n(k)^{2}\left(\left(p^{2}+q^{2}\right)^{k-1}-\left(p^{2}+q^{2}\right)^{k}\right) \\
& \leq p q \sum_{k=k(1)}^{\infty} \psi(k)^{2}
\end{aligned}
$$

If (4.3) is finite, then $\psi(k) \rightarrow 0$, therefore (4.4) is also convergent.
Theorem 4.4 (LUC/LLC of $\left.Y_{n}\right)$. Set $f(x)=(1+x) e^{-x}$ and let $k(n)$ be a nondecreasing sequence of positive integers, for which $k(n)-2 \log n$ is quasi-decreasing. Then the probability that $Y_{n} \leq k(n)$ holds for infinitely many n is equal to 0 or 1 , according as the sum

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} f\left(\frac{1}{2} n^{2}\left(p^{2}+q^{2}\right)^{k(n)}\right) \tag{4.5}
\end{equation*}
$$

is finite or infinite.
Proof. As in the proof of Theorem 4.3, let $n(k)=\min \{n: k(n)=k\}$. This time define $\psi(k)=\left(p^{2}+q^{2}\right)^{k / 2}(n(k)+1)$, then $\log \psi(k)$ is quasi-increasing. Clearly, $Y_{n} \leq k(n) \Leftrightarrow T_{k(n)} \geq n+1$, thus $Y_{n} \leq k(n)$ holds for infinitely many n if and only if $T_{k} \geq n(k)+1$, that is, $\left(p^{2}+q^{2}\right)^{k / 2} T_{k} \geq \psi(k)$ for infinitely many k. Under the condition $k(n)-2 \log n \rightarrow-\infty$ or equivalently, $\psi(k) \rightarrow \infty$, we will show that (4.1) and (4.5) are equiconvergent.

On one hand we have

$$
\begin{gathered}
2 \sum_{n=n(k)}^{n(k+1)-1} \frac{1}{n} f\left(\frac{1}{2} n^{2}\left(p^{2}+q^{2}\right)^{k(n)}\right) \geq \sum_{n=n(k)}^{n(k+1)-1} n\left(p^{2}+q^{2}\right)^{k} \exp \left(-\frac{1}{2} n^{2}\left(p^{2}+q^{2}\right)^{k}\right) \\
\geq \int_{n(k)}^{n(k+1)} x\left(p^{2}+q^{2}\right)^{k} \exp \left(-\frac{1}{2} x^{2}\left(p^{2}+q^{2}\right)^{k}\right) d x \\
=\exp \left(-\frac{1}{2} n(k)^{2}\left(p^{2}+q^{2}\right)^{k}\right)-\exp \left(-\frac{1}{2} n(k+1)^{2}\left(p^{2}+q^{2}\right)^{k}\right),
\end{gathered}
$$

hence (4.5) is not less than

$$
\frac{1}{2} \sum_{k=1}^{\infty}\left(\exp \left(-\frac{1}{2} n(k)^{2}\left(p^{2}+q^{2}\right)^{k}\right)-\exp \left(-\frac{1}{2} n(k)^{2}\left(p^{2}+q^{2}\right)^{k-1}\right)\right)
$$

Here

$$
\begin{aligned}
\exp \left(-\frac{1}{2} n(k)^{2}\left(p^{2}+q^{2}\right)^{k}\right) & -\exp \left(-\frac{1}{2} n(k)^{2}\left(p^{2}+q^{2}\right)^{k-1}\right) \sim \\
& \sim \exp \left(-\frac{1}{2} n(k)^{2}\left(p^{2}+q^{2}\right)^{k}\right) \geq \exp \left(-\frac{1}{2} \psi(k)^{2}\right)
\end{aligned}
$$

Consequently, if (4.5) is finite, so is (4.1).
On the other hand,

$$
\begin{align*}
\sum_{n=n(k)}^{n(k+1)-1} \frac{1}{n} & f\left(\frac{1}{2} n^{2}\left(p^{2}+q^{2}\right)^{k(n)}\right) \\
& \leq \int_{n(k)-1}^{n(k+1)-1} x\left(p^{2}+q^{2}\right)^{k} \exp \left(-\frac{1}{2} x^{2}\left(p^{2}+q^{2}\right)^{k}\right) d x \\
& \leq \exp \left(-\frac{1}{2}(n(k)-1)^{2}\left(p^{2}+q^{2}\right)^{k}\right) \tag{4.6}
\end{align*}
$$

If $n(k)\left(p^{2}+q^{2}\right)^{k} \leq 1,(4.6)$ can be estimated by $\exp \left(2-\frac{1}{2} \psi(k)^{2}\right)$.
If $n(k)\left(p^{2}+q^{2}\right)^{k}>1$, (4.6) can be estimated by $\exp \left(-\frac{1}{8}\left(p^{2}+q^{2}\right)^{-k}\right)$, the latter terms produce a convergent series. Thus, if (4.1) is finite, so is (4.5).

Now the proof can be completed by applying Theorem 4.1. If (4.5) is finite, then there exists a subsequence of positive integers along which $n^{2}\left(p^{2}+q^{2}\right)^{k(n)} \rightarrow \infty$, that is, $k(n)-2 \log n \rightarrow-\infty$. By its quasi-decreasing property, $k(n)-2 \log n$ tends to $-\infty$ along the positive integers. If (4.5) is infinite and $k(n)-2 \log n$ does not tend to $-\infty$, the Hewitt-Savage $0-1$ law can be applied in the same way as in the proof of Theorem 4.1.

Corollary 4.1. With probability 1 ,

$$
\begin{array}{ll}
T_{n} \leq 2 \log n+\log \log n+(1+\varepsilon) \log \log \log n & \text { for large } n, \\
T_{n}>2 \log n+\log \log n+\log \log \log n & \text { infinitely often, } \\
T_{n} \leq\left[2 \log n-\log \log \log n-\log 2-2 \frac{\log \log \log n}{\log \log n}\right] & \text { infinitely often, } \\
T_{n} \geq\left[2 \log n-\log \log \log n-\log 2-(2+\varepsilon) \frac{\log \log \log n}{\log \log n}\right] & \text { for large } n .
\end{array}
$$

Apart from the multiplier 2 of the term $\log n$, these bounds are very similar to those obtained by Erdős and Révész for the length of the longest success run in a sequence of Bernoulli trials, see [8].

References

1. Arratia, R., Goldstein, L. and Gordon, L., Two moments suffice for Poisson approximations: The Chen-Stein method, Ann. Probab. 17 (1989), 9-25.
2. Camarri, M. and Pitman, J., Limit distributions and random trees derived from the birthday problem with unequal probabilities, Technical Report No. 253, Department of Statistics, University of California, Berkeley, CA (1998).
3. Erdős, P. and Rényi, A., On Cantor's series with convergent $\sum 1 / q_{n}$, Annales Univ. Sci. Budapest., Sectio Math. 2 (1959), 93-109.
4. Galambos, J., The Asymptotic Theory of Extreme Order Statistics, Wiley, New York, 1978.
5. Móri, T. F., More on the waiting time till each of some given pattern occurs as a run, Canad. J. Math. 42 (1990), 915-932.
6. Móri, T. F., On the strong law of large numbers for logarithmically weighted sums, Annales Univ. Sci. Budapest., Sectio Math. 36 (1993), 35-46.
7. Móri, T. F., The a.s. limit distribution of the longest head run, Canad. J. Math. 45 (1993), 1245-1262.
8. Révész, P., Random Walk in Random and Non-random Environments, World Scientific, Singapore, 1990.
9. Zubkov, A. M. and Mikhaı̆lov, V. G., Limit distributions of random variables that are connected with long duplications in a sequence of independent trials, Teor. Verojatnost. i Primenen. 19 (1974), 173-181. (in Russian)

Department of Probability Theory and Statistics, EÖtvös Loránd University,
RákócZi Út 5, Budapest, Hungary H-1088
E-mail address: moritamas@ludens.elte.hu

[^0]: Research supported by the Hungarian National Foundation for Scientific Research, Grant No. T-29621

