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ABSTRACT. Let A1, Ao, ... be ii.d. random subsets of the positive integers gener-
ated in such a way that the events {i € A;}, 1 <4, 1 < j are independent and
of the same probability p. For every n = 1,2,... let Q, = {1,2,...,n} and define

A§”) = A; N Q,. Finally, let
Y, = min {j : Agn), Agn), Coe Aj(.n) separate Qn} .

(We say that Q is separated by a family A of its subsets if for any two elements z,y
of Q0 there exists a subset A € A such that either z € A, y¢ Aoryc A, z ¢ A.)

In the paper the following issues are discussed:

— asymptotic distribution of Y, as n — oc, with estimation for the accuracy of
approximation,

— a.s. limit distribution,
— a.s. asymptotic behaviour, Lévy classes.

1. INTRODUCTION

Definiton. Let Q be an arbitrary nonempty set and A C 2% a family of its subsets.
A is said to separate Q if for any two elements x, y of € there exists a subset A € A
such that either z € A, y ¢ Aory € A, = ¢ A holds.

(n) 4

Let €2, be a fixed set of size n. Select a sequence A4;"/, A", ..., of i.i.d. random

subsets of 2, in such a way, that for each subset A§n> every element of €2, is picked
independently and with the same probability p. Stop when they separate. Let
Y, denote the number of subsets selected. We are interested in the asymptotic
properties of Y, as n — oco. In order that a.s. investigations also make sense we
need to define all Y}, in the same probability space.

Let (X;;,1 < 4,1 < j) atwo-way infinite array of i.i.d. Bernoulli random variables
with P(X;; =1) =p, P(X;; =0) =1—p = ¢. With every column we associate a
random subset of positive integers as follows: A; = {i > 1: X;; =1}, j > 1, that
is, X;; = I(i € Aj). These subsets are independent and identically distributed. Let
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us define A;n) as the starting section of A;: Aé") ={1,2,...,n}NA;. We consider
the stopping times

Y, = min{k : Agm,Agn), ...,Agn) separate {1,...,n}}, n>1.

as well as the inverse quantities

T\ = min {n : A§") Aé"). ...,A;c") do not separate {1,. ..,n}}, E>1.

If we focus on the first n rows, Y}, will show, how many columns are needed so that
these rows become all different. If, instead of rows, we fix k columns, and take rows
one after another while they are all different (up to the first k¥ element), then T} is
the number of rows needed for the first repetition, that is, the smallest n for which
the k-vectors

[Xlla-"aXlk} [X217~"5X2k]7 [Xn17~"7Xnk]

are not all different.

Random variables Y,, and T}, are obviously in strong connection, for {¥;, < k} =
{T}, > n}. There are problems that can be attacked more easily through T}, while
others may appear simpler if the Y,, are dealt with.

2. ASYMPTOTIC DISTRIBUTION

The second representation of T}, clearly shows that, as far as limit distribution
is concerned, we face a particular case of the generalized birthday problem: i.i.d.
random vectors of distribution P(z) = p=~®igh-X 2 € {0,1}* are taken, one
after another, until the first repetition. There exists a huge amount of literature
on that problem, here we only mention two papers: the classical work [9], which
contains a complete description of possible limit distributions in a more general
setup, and a recent preprint [2], which offers a good survey of related results. From
the classical theory it follows that T}, multiplied by the factor

1/2

9y = Z (pZmiqkfzmi)Q _ (p2 +q2)k/2
xc{0,1}*

converges in distribution: P (9;T) >t) — exp(—t*/2), t > 0, as k — oo. For
precise asymptotic analysis we shall also need an estimation for the rate of conver-
gence. As we have already seen, {Y,, < k} means that there are no two identical
k-vectors among the first n rows. For 1 < i < j < n let B;; denote the event that
row 4 is identical to row j (up to the first & element). We need the probability that
none of the events B;; occur. Two powerful methods that can be applied with suc-
cess in similar situations are the graph-sieve of Rényi (see [4]) and the Chen—Stein
method of Poisson approximation [1]. They are not equally efficient. The Chen—
Stein method, if applicable, usually gives more: a Poisson approximation for the
number of occurring events, together with a very sharp estimation for the accuracy
measured in total variation of probability distributions. If all events in question
are dependent with a complicated dependency structure then the Rényi sieve still
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works when the Chen—Stein method breaks down, see [5]. But when each event
has a relatively small ”dependency neighborhood” such that it is independent of
all events outside of that, then the proper choice is the Chen—Stein method. This
is the case just now: B;; is independent of all events By, that have no indices in
common with it.

Let us apply Theorem 1 of [1]. Introduce H = {(i,j) : 1 < i < j < n},
K;j ={(,m) e H:{i,j}n{{,m} # 0} (neighborhood of dependence), and finally

o= Y P(By)= <Z> (p2+q2)k;

(i,j)€EH

n 2\ 2k
(Z,])EH ([,m)EKij

< k
by= Y > P (Bij N Bew) =n(n—1)* (p* +¢°)".
(i,j)EH (Z.n#([am)EKzJ

Then we immediately obtain the following basic inequality.

1—e o

‘P(Tk >n)—e_’\0| < "

(b1 +b2) . (2.1)
In order to formulate the main result of this section we shall need some more

notations. Let
P + %)%/

= Teae Tl

2 + 2 1 1 . ok
=pie S T Wre)
Let F(z) = exp (=% (p> +¢*)"), = € R, this is the distribution function of an
extreme value distribution from the location—scale family of Gumbel distributions.
Define g;(z) = F(i + ) — F(i + x — 1), thus g(z) = (g;(z) : i € Z) is a parametric
family of discretized versions of distribution F. For sake of brevity let us denote
the logarithm to the base (p? + ¢2)~! by Log (while log will be reserved for natural
logarithm). Let o and N denote the fractional and integer parts of 2 Logn, resp.
Finally, introduce m;(n) = P (Y, = N +1).

Theorem 2.1.
[P (Y, <k)—e | <dnyF, (2.2)
(logn)los” N
() — a(-a)ll = 0 (DB ) = ofur), (2.3
where || .|| stands for total variation,
% : VE
stzlp‘P((pQ—i—qQ) / Ty >$) — exp (—%xz)‘ :O(W). (2.4)

Proof. From (2.1) it follows that

P <k —e | <2 (P +¢)" +978) (1= ™)
<dny* (1 — e*’\o) .
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This, together with the inequality

e —e | <e M (1 — exp (—g (»* + qz)k)) < 6’“’% P+ < gv”“f“’

gives (2.2).
For the proof of (2.3) let k = N + 4, then 4% = y2Lognti-a — p2Logy yi—a and

N+i—2Logn

A= (07 +0)" =3 (7 +0?) =50+

thus e™ = F(i — a). Hence, with an arbitrarily fixed iy we can write

I (n) = e(=a)ll = Y lei(~a) = mi(n)| =2 (0s(~a) — mi(n))”"

icz i€z
<2 Joi(—) = mi(n)| +2 ) 0i(—a)
i>io i<io

§4Z‘P(YngN—i—i)—F(i—a)‘—i—QF(io—a)

i>ip

<16n Y 4~V 4 2F(ig — a)

i>io
1 )
= 16n (1 - %) v~ (NFio) L 9F (i — a)

1 . ,
_ - ?’71 nl—2Log~y 77(20*@ +2F(ig — ). (2.5)

Let 6 = 2Logy — 1 > 0 and 4 such that
n /) < Flig—a) <n~°.

Such an ig does exist, because F(x + 1) = F(m)p2+q2. Since F(ig +1—a) >n=9,
it follows that ig + 1 — a > Log(2d logn), thus

0% < y(28logn)o8 Y,

Plugging this in (2.5) we obtain the first equality of (2.3).
For the second equality of (2.3) we need to estimate 2 Log~y — 1. Since p? +¢% =
log(1 — 3pq)

1 —2pq and p® + ¢ = 1 — 3pg, we can write
/-pq dt
2Logy—1=2—>—""21_3-3 Jo 1231 4

log(1 — 2pq) /pq dt
0

1-2¢

Here

1 [P dt 1 [P 1+¢ 1 [P 1 [P dt
- > = + dt>—/ (1+t)dt—/
pg o 1-3t pgJo 1-2¢ Pq Jo pqgJo 1-2t

1 Pq
:_(1+@)/ dt ’
pq 2 o 1—2t
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consequently, 2Log~y — 1 > %pq.
Finally, let  be a fixed positive number, and n = [az (P> +¢%) _k/Q} . Then

P((p2+q2)k/2Tk>x) —P(Ty>n)=P (Y, <k,

and from (2.2) we have
‘P (Y, < k) —exp <—%n2 (p2 + qg)k)‘ < dny~F < dazp7*.
On the other hand, 0 < z? — n? (p* + q2)k <2z (p* + q2)k/2, which implies

0 exp (~n” (7 +¢)") - exp (~Fa?) <1 - exp (=2 (5 + 1))
<z(p’+ q2)k/2 <zB7k.
Hence, for = < xo = /2klog 3 we have

P07 +02) " T > o) = exp (—3a?)| < o * = O(Z—E),
while for x > g

‘P ((p2 + qz)k/2 Ty > x) — exp (—%xQ)‘ <
<P ((p2 + qz)k/2 T > azg) Vexp (—3z5) = O(g)

3. A.s. LIMIT DISTRIBUTION

From (2.3) it is clear that Y;, — [Logn] is stochastically bounded, but does not
have a limit distribution as n — 0o, because of the logarithmic periodicity appearing
in the asymptotic distribution. This is not just a matter of centering, no other
centering sequence could made T}, converge in distribution.

Similar periodicity appears in the asymptotic distribution of random variables
inverse to other sequences of waiting times that increase at an exponential rate,
see [7]. A typical example is the length of the longest head-run observed during n
tosses of a coin. However, in each of those examples the existence of an a.s. limit
distribution can be proved.

A sequence of random variables (, is said to have a.s. limit distribution, if for
every real x
1 1
i — — < = .S. .
Jim o n; —I(G < 2)=G() as (3.1)
with some non-degenerate distribution function G(z). Under quite general condi-
tions, (3.1) holds if and only if the sequence of probabilities P({, < x) is logarith-
mically summable to G(z). This ”transfer principle” is supported by the following
simple lemma.
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Lemma 3.1. [6] Let &,&, ... be a sequence of uniformly bounded random vari-
ables (e.g. & = I(Cn < 2) — P(Gr < 1)), such that |E (§&;)] < h(j/i), 1 <i<j,
where h is a positive decreasing function, and

 h
/ ﬂdxgoo.
1 zlogx

Then .
_ 1 1
Jim, @nzzl pin =0 as

Since logarithmic averaging can eliminate periodicity, a.s. limit distribution may
exist even when ordinary limit distribution does not.

In order to apply Lemma 3.1 we first have to estimate P (Y, <k, Y; <r) =
P(Ty>n, T, >s), k<r,n <s. Such an estimation will be useful in Section 4, so
calculation will be carried out in a little bit more general setup than it is necessary
here. The method we are going to apply is the Chen—Stein approximation for the
conditional distribution

P(T,>s|X;;,i<n,j<k).

For sake of brevity, let F = o {X;; : ¢ <n, j <k} and let H denote the set of

those pairs (7, 7), 1 <14 < j < n, that are not separated by Aﬁ” cee A( ") , that is,
[Xila---;Xik] = [le;---ank}-

H = {(i,j) :1<i<j<n, By occurs}.

Further, let S; = X;1 + -+ + X, 1 <i <n, they are i.i.d. random variables.
By Theorem 1 of [1], P (Tr > s | J’:) is approximately equal to e™#, where

>, PBy[F)= 3 o+ > o+ >

1<i<j<s 1<i<j<n n<i<j<s 1<i<n<j<s

0 +a2) "M+ (s;n) P +¢»)" + (P + ) Zps k=S,

I

The approximation error is majorized again by

> PBy|FPBwm|F+ Y. P(BiNBm|F). (2
{6,410 Em) £0 ngem)2o
i, .m

Let us estimate the sums of (3.2) on the event {Y,, <k} ={H =0} € F. In
the second sum |{i,j,€,m}| =3, and {i,j,¢,m}N{l,...,n} < 1. Obviously, on H
[{1,....,n}N{i,j,¢,m}| > 1 cannot happen, because B;; N By, means that neither
pair from {i,j, ¢, m} is separated. Thus the second sum will be divided into two
parts.

Case (a): n < i, and n < ¢. The summands are all equal to (p* +¢°)", and
there are 6 (s ; n) of them.
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Case (b): either i < n or £ < n. The summands are of the form
2(k— —k
p2St 2 k=50 (p* +q3)r ’

where ¢t = i A £, and there are 6 (s ; n) of each.

Thus the second sum in (3.2) is estimated by

n
PP+ q%) 4387 (00 +g?) T pESgP S, (3.3)
t=1
As regards the first sum, we distinguish two (not disjoint) cases according as

t € {i,j} N {¢,m} falls below or above n (in fact, the two pairs may coincide, then
t is not unique).

Case (a): t < n. The contribution of those terms is

((S _ n)pStqk—St (p2 n qg)r—k)Q

Case (b): n < t. The contribution of those terms is

(ZPS h=Si(p +q2)r_k+(s—n—1)(p2+q2)r> <

2
2(p +q (Zps k— S> +2$2(p2+q2)2r

Thus the first sum in (3.2) is estimated by

963 (pg + q2)2r 482 (p2 i q2)2(rfk) ZPQSTQZ(L—S )

+ 25 (0 + ¢°) <Zps k- S) . (34)

By using (3.3), (3.4), and inequality (p® + q2)2 < p*+¢* we obtain the following
estimation for the approximation error,

3s° (p° + %) + 2s(p®+ q3)rfk 27+ 487 (0P + (13)7’7]c ¥,
where

n
Y, _Zps k— S’ 22:Zp251'q2(k75)
i=1

Let us introduce the event

n
Dy = {Zps k—S; < k3 (p2 +q2)k7 ZPQSti(k—Si) < k3 (ps +q3)k}_

i=1
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The distribution of \S; is binomial, so it is easy to see that
kS, ‘ on k 95, 9(k—S; k
E(pSd=%) = +)", E (pzszqz(k Sz)) = (p*+¢)",

hence by the Markov inequality P (Ekn) < 2k73,
On Dg, N{Y,, <k} we have

<S;n> (r* +4°) <n< <<8;n> +k‘3ﬂ> »* +d°)", (3:5)
and the approximation error can be estimated by
s3 (p3 + q3)r (3 + 2k + 4k3) < 9s° (p2 + qQ)T kb4,
Putting all these together we obtain the following estimation.

Lemma 3.2. Let Cky, = {Tx, > n} N Dyy,. Then

ns

‘P(Cknmcrs)_P(Ckn)P(Crs)‘ < (s—n)

+ (s +En) (p° +¢°)" + 477"+ 95° (0® + ¢%) Ky + 402,
Proof. Let us start from inequality
|P(Chn N Crs) = P(Cin) P (Cro)| < [P (Chn N Crs) = P (Con N{T: > 5}) |+
+|P(CrnN{T, > 5}) = P(Crn)e |+ |e " — e} P(Cry) +
+ e = P(Cps)| P (Cin),
where X = 12 (p> + ¢?)", and
‘u —Ls-n) (P + qQ)T‘ < (s+Kn) (p* + qQ)T
by (3.5). Terms in the right-hand side will be estimated separately. Firstly,
|P (Cn N{T; > 5}) = P(Ckn N Crs)| < P (Dys) < 2r73.
Let us integrate P (T, > s | F) on the event Cj,. There we have
|P(T, >s|F)—e | <9s° (0 +¢) Ky,
hence the same upper bound holds for |P (Ckn N {T; > s}) — P (Ckn) e *|. Let n
denote (1 — %)2, then in the next term

e M — e*>‘| <e M_e 4 |e*“ — e*)‘”‘

<eMAL=n)+ (s +Kn) (0" +¢°)
o S+(s+kn)(p +q¢°)
ns

CEE
Finally, from (2.2) it follows that
|e_>‘ - P (CTS)| <dsy™" 42073,

IN

IN

+ (s + ksn) (p2 + qg)r .

From all these we get just what we need.

Now we are in a position to prove the main result of this section.
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Theorem 3.1. With probability 1

LZEI(YH—[QLogn}:i)Z/O (Fli—y)—F(i—1-y))dy, i€Z,

im
t—oo logt n
n=1

t 1
. 1 1
lim @;EI(Yn—2Logn§x):/oF(x—y)dy, z€eR

t—o0

Proof. We will only prove the first limit relation. The case where the centering
sequence is 2 Logn can be treated similarly, and therefore it will be omitted.

Let £ = [2Logn] + i and C,, = {Y, < k} N Dy,. We will use Lemma 3.1
with &, = I(Cy) — P(Cy), thus we need to estimate the covariances F (£,&s) =
P(C,NnCs) —P(Cp)P(Cs), 1 <n <s. Let r = [2Logs] +i > k, then sy " =
OB, s (p2 + qQ)T = O(1), and from Lemma 3.2 it is clear that

no1
|P(ChnCs) = P (Co) P(Cy)| =0 <§+log—3.s>

as n and s — n tend to infinity, thus h(z) = O ((logx)~?) will do. Since P(C,) ~
F(i — a), Lemma 3.1 implies

t
1 1 1 1
li — —I(C,) = li — —F(i —a).
500 logt 7;2::1 n (Cn) 500 logt 7;2::1 n (i =)
Let the value of N be fixed; it means that n falls between h; = (p* + ¢*)~¥/? and
hy = (p* + ¢*)~(N+1/2. The contribution of such terms to the logarithmic sum is
ha

Z lF(z —a) ~ / %F(z —2Logz)dx.

n
h1<n<hg ha

By substitution y = 2 Logx — N this integral is transformed into

1 o [T
—§1og(p2+q2)/ F(i —y)dy,
0

hence we obtain that
t

1 1 !
lim —— —I(Cy) = F(i —y)dy.
5o logt ; n (Cn) /0 (i = y)dy
In order to complete the proof of the first relation of Theorem 3.1 it suffices to note
that

for here

Consequently, with probability 1,

t t

1 1 1 1
lim — —(I(T,—-[2L <i)—=I(Ch)) < lim — — I(Dyyp) = 0.
oo logtnz::ln( ( [2Logn] <) (@ ))_tig)lc logtnz::ln (Din) =0
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4. LEVY CLASSES

For the definiton of Lévy classes UUC, ULC, LUC, LLC see Chapter 5 of [8].
The a.s. asymptotic behaviour of the sequence Y,, is better to study through the
inverse sequence T}. First we deal with the upper classes.

Theorem 4.1 (UUC/ULC of Ty). Let ¢ be a positive increasing function. The
probability that (p2 + q2)k/2 Ty, > (k) holds for infinitely many k is equal to 0 or

1, according as the sum

S exp (~Lp(k)?) (4.1)
k=1
is finite or infinite.

Proof. Suppose (4.1) is finite. Then P ((p2 + qg)k/2 T > w(k)) ~ exp (—%w(k)g),
by (2.4), thus

ZP <(p2 + qg)k/2 Ty > w(k)) < 00.
k=1

The Borel-Cantelli lemma implies that ¥ (k) belongs to the upper—upper class of
the sequence (p? + qz)k/2 Ty.

Conversely, assume (4.1) is infinite. We may suppose that (k) < 2 (log k)l/g, or
else we can replace (k) with ¢'(k) = ¢(k) A2 (log k)l/g. In this way (4.1) remains
infinite, and (k) belongs to the lower—upper class if and only if so does ¥'(k),
because (p? + qQ)k/2 Ty > 2 (log k)'/? cannot occur for sufficiently large k. We may
also assume that (k) — oo, otherwise lim sup P ((p2 + qz)k/2 Ty > 1/)(k)) would
be positive, which, combined with the 0 or 1 law of Halmos and Savage, would give
that (k) € LUC.

Let n = n(k) = [(p* + qz)ik/2 ¢(k)] — 1, that is, (p* + (]2)k/2 Ty, > (k) if and
only if T}, > n.

This time let Cy = Ck,n(k) = {Tk > n} N Dk,n(k)a then P (C}) ~ exp (—% (k‘)Q)
again. We will apply the Erdés—Rényi generalization of the Borel-Cantelli lemma
(see [3]) to the events C. To this end we need an upper estimation for the expression

M M
o= Y _(P(CkNC,p) = P(C) P(C)).

k=1r=1

Let us apply Lemma 3.2 with r > &k and s = n(r) < n(k). By supposition,
n® (p* + q2)k <4logk, s*(p*+q*)" <d4logr, (4.2)
hence

E;:755])(C%)+

+ 4% (log r)1/2 (p*> + qz)r/2 +8 (logr)l/2 BT+ 72k° (log r)3/2 BT +dr 3,

[P (CyNCy) = P (Cy) P(Cr)| <
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Here

ns - _n(_r 72’ n_ (p2_|_q2)(7’*k)/2+0 (p2+q2)7r ’
(s —n) s s s

from which it follows that

The Erdds-Rényi lemma implies that, with probability 1, infinitely many of the
events Cy, occur. Since Y- P (Dy, nk)) < 00, Dy n() occurs for every k large enough,
thus ¢ (k) € LUC, indeed.

Theorem 4.2 (LUC/LLC of Ty). Let ) be a positive decreasing function, for which
(p* + q2)7k/2 ¢(k) increases. The probability that (p* + q2)k/2 Ty < 4(k) holds for
infinitely many k is equal to 0 or 1, according as the sum

> k)’ (4.3)
k=1

is finite or infinite.

Proof. The proof goes along the same lines as that of Theorem 4.1. When (4.3)
is finite, then P ((p2 + qz)k/2 Ty < 1/)(k)) ~ 11(k)?, hence the LLC result follows
from the ordinary Borel-Cantelli lemma.

When (4.3) is infinite, we can suppose that P ((p2 + qz)k/2 Ty < 1/)(k)) - 0,
that is, ¢(k) — 0. We can confine ourselves to the case 1/k < (k) without loss
of generality. Let n = n(k) = {(p2 + qg)_k/gw(k)}, and Cj, = {Tx > n} N Dy .
Again, the Erdds-Rényi lemma will be applied, but this time to the events C}.
Note that (4.2) is replaced with inequality n (p® + qg)k/2 > 1/k.

For the estimation of

i

M=
WE

(P(CenCy) =P (Ck) P(Cr))

~
Il
-
5
[
-

(P(Ckmcr)_P(Ck)P(Cr))

i
WE

?~
[
-
<
Il
-
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it is sufficient to deal with |P (CxrNCy)—P(Cy) P (Cr)‘ again, but Lemma 3.2 has
to be replaced with another, very similar result, namely

[P (Cyn N Crs) — P (Chn) P (Cr)| <ms (p* +¢%)" +
+ (s+k3 ) (p +q ) + 457" 4+ 9s° (p2 +q2)rk67*” + 4973

The only difference is in the estimation of e=*7 — e=*. Clearly,
e™M e = (1-(1- e_/\))n —e A<l -9 (1- e_>‘) —e A

=(1-n(1-e?) §2?n/\:ns(p2+q2)r.

Here /o
ns (2 + )" <v(k)? (0 +¢*)" ",

therefore we can write

P(Cy)+2 > [P(CinC,) = P(Cr) P(C,)]

M
k=1 1<k<r<M
M

P (Cy) +2 Z ¥(k)? (p* + qz)(’"_k)/2 +0(1)

k=1 1<k<r<M

completing the proof.

Remark. A sequence x; of real numbers is called quasi-increasing (quasi-decreasing,
resp.), if the supremum (infimum) of the set of differences {x; —z; : 1 <4 < j} is
finite. From the proofs it can be seen that the sequence (k) in Theorems 4.1
and 4.2 need not be monotone: it is sufficient to require that (p2 + qz)fk/z (k)
increases and

— (in Theorem 4.1) log ¥ (k) is quasi-increasing,

— (in Theorem 4.2) log (k) is quasi-decreasing.

Finally, we adapt our results to the sequence Y,.

Theorem 4.3 (UUC/ULC of Y,,). Let k(n) be a a non-decreasing sequence of
positive integers, for which k(n) — 2 Logn is quasi-increasing. The probability that
Y, > k(n) holds for infinitely many n is equal to 0 or 1, according as the sum

Zn p° +q%) ) (4.4)
n=1

is finite or infinite.

Proof. Let n(k) = n{n k(n) =k}, i.e., k(n) =k for n(k) <n < n(k+1). Define
Y(k) = ( +q ) n(k 4+ 2) — 1), then logw(k) is quasi-decreasing. Obviously,
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Yy > k(n) € Tyn)—1 < n, thus Y, > k(n) holds for infinitely many n if and only if

Te < n(k+2) —1, that is, (p* + c]2)k/2 Ty > (k) for infinitely many k. We shall
prove that (4.3) and (4.4) are equiconvergent.

Since
. n(k+1)—1
Z<n(k_|_ 1)? _n(k)Q) (pz +q2)k < Z n (pz +q2)k(n)
n=n(k)

we obtain, on one hand, that

= ‘ n 1 0 ok ‘ ‘
nz::ln(pz +q2)k( ) > Zk§l)n(k)2 ((p2+q2)k 1 (p2 +q2)k) B n(l)z
>4 fj Y(k)? - n(1)?
k=k(1)

thus the finiteness of (4.4) implies that of (4.3).
On the other hand, if n(k)? (p* + q2)k — 0, that is, ¥(k) — 0, then

. 0 k) 1 o o ok
Z n(pz—i—qz)k( ) < > Z n(k)? ((pz+qg)k 1 (p2+q2)k)
n=n(k(1)42) k=k(1)+2
<pg > (k)
k—k(1)

If (4.3) is finite, then (k) — 0, therefore (4.4) is also convergent.

Theorem 4.4 (LUC/LLC of Y,,). Set f(z) = (1 +x)e™* and let k(n) be a non-
decreasing sequence of positive integers, for which k(n)—2Logn is quasi-decreasing.
Then the probability that Y,, < k(n) holds for infinitely many n is equal to 0 or 1,
according as the sum

=1 k(n)
> ) —f (%"2 (»* +4°) ) (4.5)
is finite or infinite.

Proof. As in the proof of Theorem 4.3, let n(k) = min{n : k(n) = k}. This time
define (k) = (p* + qz)k/z (n(k) + 1), then logy(k) is quasi-increasing. Clearly,
Yy < k(n) & Tyny) > n+ 1, thus Y, < k(n) holds for infinitely many n if and only
if Ty > n(k) + 1, that is, (p? + ¢2)"/* T4 > (k) for infinitely many k. Under the
condition k(n) —2 Logn — —oo or equivalently, (k) — oo, we will show that (4.1)
and (4.5) are equiconvergent.
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On one hand we have

n(k+1)—1 n(k+1)—1

9 Z %f (%nQ (p2+q2)k(n)) > Z n(p2+q2) exp (——n (p tq ) )
n=n(k) n=n(k)
(k+1) ‘
2/(k> :r(pz—i-qQ) exp( 2 (p? +q))daz

o (s 7 1) s (ot 412075 '),

hence (4.5) is not less than

i (exp (p2 + q2)k) _ exp(—%n(k)Q (p2 + qz)k—l)) '

l\')l»—l

Here
exp <—%n(k)2 (p* + qg)k) —exp (—%n(k‘)2 (p* + qQ)kfl) ~
~ exp (—%n(k)z (p*> + qz)k) > exp (—1¢(k)?) .
Consequently, if (4.5) is finite, so is (4.1).
On the other hand,

n(k+1)—1

Z %f (%nz (p2 +q2)k(n))

n=n(k)
. /n(k-l-l)—l i (p2 . q2) oxo <_ (p e ) ) i
<exp (=3(n(k) - 1) (5 +¢)"). (4.6)

If n(k) (p* + q2)k < 1, (4.6) can be estimated by exp (2 — Lv(k)?).

If n(k) (p* + qQ)k > 1, (4.6) can be estimated by exp(—é (P*+4q ) ), the latter
terms produce a convergent series. Thus, if (4.1) is finite, so is (4.5).

Now the proof can be completed by applying Theorem 4.1. If (4.5) is finite, then
there exists a subsequence of positive integers along which n? (p* + qz)k(m — 00,
that is, k(n) — 2Logn — —oo. By its quasi-decreasing property, k(n) — 2Logn
tends to —oc along the positive integers. If (4.5) is infinite and k(n) — 2 Logn does

not tend to —oo, the Hewitt—Savage 0—1 law can be applied in the same way as in
the proof of Theorem 4.1.

Corollary 4.1. With probability 1,

T, < 2Logn + Loglogn + (1 + ¢) Logloglog n for large n,
T, > 2Logn + Loglogn + Logloglogn infinitely often,
Loglogl
T, < |2Logn — Logloglogn — Log2 — 2 —08706 708 1 infinitely often,
loglogn
Loglogl
T, > [2 Logn — Logloglogn — Log2 — (2 + s)%} for large n.
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Apart from the multiplier 2 of the term Logn, these bounds are very similar to
those obtained by Erd6s and Révész for the length of the longest success run in a
sequence of Bernoulli trials, see [8].
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