
SEPARATING SYSTEMS OF RANDOM SUBSETSTam�as F. M�oriE�otv�os Lor�and University, Budapest28.10.1999Abstrat. Let A1; A2; : : : be i.i.d. random subsets of the positive integers gener-ated in suh a way that the events fi 2 Ajg; 1 � i; 1 � j are independent andof the same probability p. For every n = 1; 2; : : : let 
n = f1; 2; : : : ; ng and de�neA(n)j = Aj \
n. Finally, letYn = minnj : A(n)1 ; A(n)2 ; : : : ; A(n)j separate 
no :(We say that 
n is separated by a family A of its subsets if for any two elements x; yof 
n there exists a subset A 2 A suh that either x 2 A; y =2 A or y 2 A; x =2 A.)In the paper the following issues are disussed:{ asymptoti distribution of Yn as n ! 1, with estimation for the auray ofapproximation,{ a.s. limit distribution,{ a.s. asymptoti behaviour, L�evy lasses.1. IntrodutionDe�niton. Let 
 be an arbitrary nonempty set and A � 2
 a family of its subsets.A is said to separate 
 if for any two elements x; y of 
 there exists a subset A 2 Asuh that either x 2 A; y =2 A or y 2 A; x =2 A holds.Let 
n be a �xed set of size n. Selet a sequene A(n)1 ; A(n)2 ; : : : ; of i.i.d. randomsubsets of 
n in suh a way, that for eah subset A(n)j every element of 
n is pikedindependently and with the same probability p. Stop when they separate. LetYn denote the number of subsets seleted. We are interested in the asymptotiproperties of Yn as n ! 1. In order that a.s. investigations also make sense weneed to de�ne all Yn in the same probability spae.Let (Xij ; 1 � i; 1 � j) a two-way in�nite array of i.i.d. Bernoulli random variableswith P (Xij = 1) = p, P (Xij = 0) = 1� p = q. With every olumn we assoiate arandom subset of positive integers as follows: Aj = fi � 1 : Xij = 1g; j � 1, thatis, Xij = I(i 2 Aj). These subsets are independent and identially distributed. LetResearh supported by the Hungarian National Foundation for Sienti� Researh, Grant No.T-29621 Typeset by AMS-TEX1



2 TAM�AS F. M�ORIus de�ne A(n)j as the starting setion of Aj : A(n)j = f1; 2; : : : ; ng \Aj . We onsiderthe stopping timesYn = minnk : A(n)1 ; A(n)2 ; : : : ; A(n)k separate f1; : : : ; ngo ; n � 1:as well as the inverse quantitiesTk = minnn : A(n)1 ; A(n)2 ; : : : ; A(n)k do not separate f1; : : : ; ngo ; k � 1:If we fous on the �rst n rows, Yn will show, how many olumns are needed so thatthese rows beome all di�erent. If, instead of rows, we �x k olumns, and take rowsone after another while they are all di�erent (up to the �rst k element), then Tk isthe number of rows needed for the �rst repetition, that is, the smallest n for whihthe k-vetors [X11; : : : ; X1k℄; [X21; : : : ; X2k℄; : : : ; [Xn1; : : : ; Xnk℄are not all di�erent.Random variables Yn and Tk are obviously in strong onnetion, for fYn � kg �fTk > ng. There are problems that an be attaked more easily through Tk, whileothers may appear simpler if the Yn are dealt with.2. Asymptoti distributionThe seond representation of Tk learly shows that, as far as limit distributionis onerned, we fae a partiular ase of the generalized birthday problem: i.i.d.random vetors of distribution P (x) = pPxiqk�P xi ; x 2 f0; 1gk are taken, oneafter another, until the �rst repetition. There exists a huge amount of literatureon that problem, here we only mention two papers: the lassial work [9℄, whihontains a omplete desription of possible limit distributions in a more generalsetup, and a reent preprint [2℄, whih o�ers a good survey of related results. Fromthe lassial theory it follows that Tk, multiplied by the fator#k = 0� Xx2f0;1gk �pPxiqk�P xi�21A1=2 = �p2 + q2�k=2onverges in distribution: P (#kTk > t) ! exp(�t2=2); t > 0, as k ! 1. Forpreise asymptoti analysis we shall also need an estimation for the rate of onver-gene. As we have already seen, fYn � kg means that there are no two identialk-vetors among the �rst n rows. For 1 � i < j � n let Bij denote the event thatrow i is idential to row j (up to the �rst k element). We need the probability thatnone of the events Bij our. Two powerful methods that an be applied with su-ess in similar situations are the graph-sieve of R�enyi (see [4℄) and the Chen{Steinmethod of Poisson approximation [1℄. They are not equally eÆient. The Chen{Stein method, if appliable, usually gives more: a Poisson approximation for thenumber of ourring events, together with a very sharp estimation for the auraymeasured in total variation of probability distributions. If all events in questionare dependent with a ompliated dependeny struture then the R�enyi sieve still



SEPARATING SYSTEMS OF RANDOM SUBSETS 3works when the Chen{Stein method breaks down, see [5℄. But when eah eventhas a relatively small "dependeny neighborhood" suh that it is independent ofall events outside of that, then the proper hoie is the Chen{Stein method. Thisis the ase just now: Bij is independent of all events B`m that have no indies inommon with it.Let us apply Theorem 1 of [1℄. Introdue H = f(i; j) : 1 � i < j � ng,Kij = f(`;m) 2 H : fi; jg \ f`;mg 6= ;g (neighborhood of dependene), and �nally�0 = X(i;j)2H P (Bij) = �n2��p2 + q2�k ;b1 = X(i;j)2H X(`;m)2Kij P (Bij)P (B`m) = �n2�(2n� 1) �p2 + q2�2k ;b2 = X(i;j)2H X(i;j)6=(`;m)2Kij P (Bij \ B`m) = n(n� 1)2 �p3 + q3�k :Then we immediately obtain the following basi inequality.��P (Tk > n)� e��0 �� � 1� e��0�0 (b1 + b2) : (2.1)In order to formulate the main result of this setion we shall need some morenotations. Let� = (p2 + q2)3=2p3 + q3 > 1;  = p2 + q2p3 + q3 � 1p2 + q2 ; � = 12n2 �p2 + q2�k :Let F (x) = exp �� 12 �p2 + q2�x� ; x 2 R, this is the distribution funtion of anextreme value distribution from the loation{sale family of Gumbel distributions.De�ne %i(x) = F (i+ x)� F (i+ x� 1), thus %(x) = (%i(x) : i 2 Z) is a parametrifamily of disretized versions of distribution F . For sake of brevity let us denotethe logarithm to the base (p2+ q2)�1 by Log (while log will be reserved for naturallogarithm). Let � and N denote the frational and integer parts of 2 Logn, resp.Finally, introdue �i(n) = P (Yn = N + i).Theorem 2.1. ��P (Yn � k)� e���� � 4n�k; (2.2)k�(n)� %(��)k = O� (logn)Log n2 Log �1 � = o�n�3pq=2�; (2.3)where k : k stands for total variation,supx ���P ��p2 + q2�k=2 Tk > x�� exp �� 12x2���� = O�pk�k �: (2.4)Proof. From (2.1) it follows that��P (Yn � k)� e��0�� � 2n��p2 + q2�k + �k��1� e��0�� 4n�k �1� e��0� :



4 TAM�AS F. M�ORIThis, together with the inequality��e��0 � e���� � e��0 �1� exp��n2 �p2 + q2�k�� � e��0 n2 �p2 + q2�k � n2 �ke��0gives (2.2).For the proof of (2.3) let k = N + i, then k = 2Logn+i�� = n2Log  i��, and� = 12n2 �p2 + q2�k = 12 �p2 + q2�N+i�2 Logn = 12 �p2 + q2�i�� ;thus e�� = F (i� �). Hene, with an arbitrarily �xed i0 we an writek�(n)� %(��)k =Xi2Zj%i(��)� �i(n)j = 2Xi2Z(%i(��)� �i(n))+� 2Xi>i0 j%i(��)� �i(n)j+ 2Xi�i0 %i(��)� 4Xi�i0���P (Yn � N + i)� F (i� �)���+ 2F (i0 � �)� 16nXi�i0 �(N+i) + 2F (i0 � �)= 16n�1� 1��1 �(N+i0) + 2F (i0 � �)= 16 � 1 n1�2Log  �(i0��) + 2F (i0 � �): (2.5)Let Æ = 2Log  � 1 > 0 and i0 suh thatn�Æ=(p2+q2) < F (i0 � �) � n�Æ:Suh an i0 does exist, beause F (x + 1) = F (x)p2+q2 . Sine F (i0 + 1� �) > n�Æ,it follows that i0 + 1� � > Log(2Æ logn), thus�i0�� < (2Æ logn)Log  :Plugging this in (2.5) we obtain the �rst equality of (2.3).For the seond equality of (2.3) we need to estimate 2 Log � 1. Sine p2+ q2 =1� 2pq and p3 + q3 = 1� 3pq, we an write2 Log  � 1 = 2 log(1� 3pq)log(1� 2pq) � 3 = 30BB�Z pq0 dt1� 3tZ pq0 dt1� 2t � 11CCA :Here 1pq Z pq0 dt1� 3t > 1pq Z pq0 1 + t1� 2t dt > 1pq Z pq0 (1 + t)dt 1pq Z pq0 dt1� 2t= 1pq �1 + pq2 �Z pq0 dt1� 2t ;



SEPARATING SYSTEMS OF RANDOM SUBSETS 5onsequently, 2 Log  � 1 > 32 pq.Finally, let x be a �xed positive number, and n = hx �p2 + q2��k=2i. ThenP ��p2 + q2�k=2 Tk > x� = P (Tk > n) = P (Yn � k) ;and from (2.2) we have���P (Yn � k)� exp�� 12n2 �p2 + q2�k���� � 4n�k � 4x��k:On the other hand, 0 � x2 � n2 �p2 + q2�k � 2x �p2 + q2�k=2, whih implies0 � exp�� 12n2 �p2 + q2�k�� exp �� 12x2� � 1� exp��x �p2 + q2�k=2�� x �p2 + q2�k=2 � x��k:Hene, for x � x0 = p2k log � we have���P ��p2 + q2�k=2 Tk > x�� exp �� 12x2���� � 5x0��k = O�pk�k �;while for x > x0���P ��p2 + q2�k=2 Tk > x�� exp �� 12x2���� �� P ��p2 + q2�k=2 Tk > x0� _ exp �� 12x20� = O�pk�k �:3. A.s. limit distributionFrom (2.3) it is lear that Yn � [Logn℄ is stohastially bounded, but does nothave a limit distribution as n!1, beause of the logarithmi periodiity appearingin the asymptoti distribution. This is not just a matter of entering, no otherentering sequene ould made Tn onverge in distribution.Similar periodiity appears in the asymptoti distribution of random variablesinverse to other sequenes of waiting times that inrease at an exponential rate,see [7℄. A typial example is the length of the longest head-run observed during ntosses of a oin. However, in eah of those examples the existene of an a.s. limitdistribution an be proved.A sequene of random variables �n is said to have a.s. limit distribution, if forevery real x limt!1 1log t tXn=1 1n I(�n � x) = G(x) a.s. (3.1)with some non-degenerate distribution funtion G(x). Under quite general ondi-tions, (3.1) holds if and only if the sequene of probabilities P (�n � x) is logarith-mially summable to G(x). This "transfer priniple" is supported by the followingsimple lemma.



6 TAM�AS F. M�ORILemma 3.1. [6℄ Let �1; �2; : : : be a sequene of uniformly bounded random vari-ables (e.g. �n = I(�n � x) � P (�n � x) ), suh that jE (�i�j)j � h(j=i), 1 � i < j,where h is a positive dereasing funtion, andZ 11 h(x)x log x dx �1:Then limt!1 1log t tXn=1 1n �n = 0 a.s.Sine logarithmi averaging an eliminate periodiity, a.s. limit distribution mayexist even when ordinary limit distribution does not.In order to apply Lemma 3.1 we �rst have to estimate P (Yn � k; Ys � r) =P (Tk > n; Tr > s), k � r, n � s. Suh an estimation will be useful in Setion 4, soalulation will be arried out in a little bit more general setup than it is neessaryhere. The method we are going to apply is the Chen{Stein approximation for theonditional distribution P �Tr > s �� Xij ; i � n; j � k� :For sake of brevity, let F = � fXij : i � n; j � k1g and let H denote the set ofthose pairs (i; j); 1 � i < j � n, that are not separated by A(n)1 ; : : : ; A(n)k , that is,[Xi1; : : : ; Xik℄ � [Xj1; : : : ; Xjk ℄.H = �(i; j) : 1 � i < j � n; Bij ours	:Further, let Si = Xi1 + � � �+Xik; 1 � i � n, they are i.i.d. random variables.By Theorem 1 of [1℄, P �Tr > s �� F� is approximately equal to e��, where� = X1�i<j�s P �Bij �� F� = X1�i<j�n+ Xn<i<j�s+ X1�i�n<j�s= �p2 + q2�r�k jHj+�s� n2 ��p2 + q2�r + �p2 + q2�r�k nXi=1 pSiqk�Si :The approximation error is majorized again byXfi;jg\f`;mg6=;P �Bij �� F�P �B`m �� F�+ Xfi;jg\f`;mg6=;(i;j)6=(`;m) P �Bij \ B`m �� F��: (3.2)Let us estimate the sums of (3.2) on the event fYn � kg = fH = ;g 2 F . Inthe seond sum ��fi; j; `;mg�� = 3, and fi; j; `;mg \ f1; : : : ; ng � 1. Obviously, on H��f1; : : : ; ng\fi; j; `;mg�� > 1 annot happen, beause Bij \B`m means that neitherpair from fi; j; `;mg is separated. Thus the seond sum will be divided into twoparts.Case (a): n < i, and n < `. The summands are all equal to �p3 + q3�r, andthere are 6�s� n3 � of them.



SEPARATING SYSTEMS OF RANDOM SUBSETS 7Case (b): either i � n or ` � n. The summands are of the formp2Stq2(k�St) �p3 + q3�r�k ;where t = i ^ `, and there are 6�s� n2 � of eah.Thus the seond sum in (3.2) is estimated bys3 �p3 + q3�r + 3s2 �p3 + q3�r�k nXt=1 p2Stq2(k�St): (3.3)As regards the �rst sum, we distinguish two (not disjoint) ases aording ast 2 fi; jg \ f`;mg falls below or above n (in fat, the two pairs may oinide, thent is not unique).Case (a): t � n. The ontribution of those terms is�(s� n) pStqk�St �p2 + q2�r�k�2 :Case (b): n < t. The ontribution of those terms is nXi=1 pSiqk�Si �p2 + q2�r�k + (s� n� 1) �p2 + q2�r!2 �� 2 �p2 + q2�2(r�k) nXi=1 pSiqk�Si!2 + 2s2 �p2 + q2�2r :Thus the �rst sum in (3.2) is estimated by2s3 �p2 + q2�2r + s2 �p2 + q2�2(r�k) nXr=1 p2Srq2(k�Sr)++ 2s �p2 + q2�2(r�k) nXi=1 pSiqk�Si!2 : (3.4)By using (3.3), (3.4), and inequality �p2 + q2�2 � p3+q3 we obtain the followingestimation for the approximation error,3s3 �p3 + q3�r + 2s �p3 + q3�r�k �21 + 4s2 �p3 + q3�r�k �2;where �1 = nXi=1 pSiqk�Si ; �2 = nXi=1 p2Siq2(k�Si):Let us introdue the eventDkn = ( nXi=1 pSiqk�Si � k3 �p2 + q2�k ; nXi=1 p2Siq2(k�Si) � k3 �p3 + q3�k) :



8 TAM�AS F. M�ORIThe distribution of Si is binomial, so it is easy to see thatE �pSiqk�Si� = �p2 + q2�k ; E �p2Siq2(k�Si)� = �p3 + q3�k ;hene by the Markov inequality P �Dkn� � 2k�3.On Dkn \ fYn � kg we have�s� n2 ��p2 + q2�r � � � ��s� n2 �+ k3n��p2 + q2�r ; (3.5)and the approximation error an be estimated bys3 �p3 + q3�r �3 + 2k6 + 4k3� � 9s3 �p2 + q2�r k6�r:Putting all these together we obtain the following estimation.Lemma 3.2. Let Ckn = fTk > ng \Dkn. Then��P (Ckn \ Crs)� P (Ckn)P (Crs)�� � ns(s� n)2P (Ckn)++ �s+ k3n� �p2 + q2�r + 4s�r + 9s3 �p2 + q2�r k6�r + 4r�3:Proof. Let us start from inequality��P (Ckn \ Crs)� P (Ckn)P (Crs)�� � ��P (Ckn \ Crs)� P (Ckn \ fTr > sg)��++ ��P (Ckn \ fTr > sg)� P (Ckn) e����+ ��e�� � e����P (Ckn)++ ��e�� � P (Crs)��P (Ckn) ;where � = 12s2 �p2 + q2�r, and����� 12 (s� n)2 �p2 + q2�r��� � �s+ k3n� �p2 + q2�rby (3.5). Terms in the right-hand side will be estimated separately. Firstly,��P (Ckn \ fTr > sg)� P (Ckn \ Crs)�� � P �Drs� � 2r�3:Let us integrate P (Tr > s j F) on the event Ckn. There we have��P (Tr > s j F)� e���� � 9s3 �p2 + q2�r k6�r;hene the same upper bound holds for ��P (Ckn \ fTr > sg) � P (Ckn) e����. Let �denote �1� ns �2, then in the next term��e�� � e���� � e��� � e�� + ��e�� � e������ e����(1� �) + �s+ k3n� �p2 + q2�r� 1e� � 2ns + �s+ k3n� �p2 + q2�r� ns(s� n)2 + �s+ k3n� �p2 + q2�r :Finally, from (2.2) it follows that��e�� � P (Crs)�� � 4s�r + 2r�3:From all these we get just what we need.Now we are in a position to prove the main result of this setion.



SEPARATING SYSTEMS OF RANDOM SUBSETS 9Theorem 3.1. With probability 1limt!1 1log t tXn=1 1n I (Yn � [2 Logn℄ = i) = Z 10 �F (i� y)� F (i� 1� y)�dy; i 2 Z;limt!1 1log t tXn=1 1n I (Yn � 2Logn � x) = Z 10 F (x� y)dy; x 2 R:Proof. We will only prove the �rst limit relation. The ase where the enteringsequene is 2 Logn an be treated similarly, and therefore it will be omitted.Let k = [2Logn℄ + i and Cn = fYn � kg \ Dkn. We will use Lemma 3.1with �n = I(Cn) � P (Cn), thus we need to estimate the ovarianes E (�n�s) =P (Cn \ Cs) � P (Cn)P (Cs), 1 � n < s. Let r = [2Log s℄ + i � k, then s�r =O (��r), s2 �p2 + q2�r = O(1), and from Lemma 3.2 it is lear that��P (Cn \ Cs)� P (Cn)P (Cs)�� = O�ns + 1log3 s�as n and s � n tend to in�nity, thus h(x) = O �(logx)�3� will do. Sine P (Cn) �F (i� �), Lemma 3.1 implieslimt!1 1log t tXn=1 1n I(Cn) = limt!1 1log t tXn=1 1n F (i� �):Let the value of N be �xed; it means that n falls between h1 = (p2 + q2)�N=2 andh2 = (p2 + q2)�(N+1)=2. The ontribution of suh terms to the logarithmi sum isXh1�n<h2 1nF (i� �) � h2Zh1 1xF (i� 2Logx)dx:By substitution y = 2Logx�N this integral is transformed into�12 log �p2 + q2� Z 10 F (i� y)dy;hene we obtain that limt!1 1log t tXn=1 1n I(Cn) = Z 10 F (i� y)dy:In order to omplete the proof of the �rst relation of Theorem 3.1 it suÆes to notethat E 1Xn=1 1n I(Dkn)! � 1Xn=1 2nk3 <1;for here 1nk3 = O� 1n log3 n� :Consequently, with probability 1,limt!1 1log t tXn=1 1n�I (Tn � [2 Logn℄ � i)� I(Cn)� � limt!1 1log t tXn=1 1n I(Dkn) = 0:



10 TAM�AS F. M�ORI4. L�evy lassesFor the de�niton of L�evy lasses UUC, ULC, LUC, LLC see Chapter 5 of [8℄.The a.s. asymptoti behaviour of the sequene Yn is better to study through theinverse sequene Tk. First we deal with the upper lasses.Theorem 4.1 (UUC/ULC of Tk). Let  be a positive inreasing funtion. Theprobability that �p2 + q2�k=2 Tk �  (k) holds for in�nitely many k is equal to 0 or1, aording as the sum 1Xk=1 exp �� 12 (k)2� (4.1)is �nite or in�nite.Proof. Suppose (4.1) is �nite. Then P ��p2 + q2�k=2 Tk �  (k)� � exp �� 12 (k)2�,by (2.4), thus 1Xk=1P ��p2 + q2�k=2 Tk �  (k)� <1:The Borel{Cantelli lemma implies that  (k) belongs to the upper{upper lass ofthe sequene �p2 + q2�k=2 Tk.Conversely, assume (4.1) is in�nite. We may suppose that  (k) � 2 (log k)1=2, orelse we an replae  (k) with  0(k) =  (k)^ 2 (log k)1=2. In this way (4.1) remainsin�nite, and  (k) belongs to the lower{upper lass if and only if so does  0(k),beause �p2 + q2�k=2 Tk � 2 (log k)1=2 annot our for suÆiently large k. We mayalso assume that  (k) ! 1, otherwise lim supP ��p2 + q2�k=2 Tk �  (k)� wouldbe positive, whih, ombined with the 0 or 1 law of Halmos and Savage, would givethat  (k) 2 LUC.Let n = n(k) = d�p2 + q2��k=2  (k)e � 1, that is, �p2 + q2�k=2 Tk �  (k) if andonly if Tk > n.This time let Ck = Ck;n(k) = fTk > ng \Dk;n(k), then P (Ck) � exp �� 12 (k)2�again. We will apply the Erd}os{R�enyi generalization of the Borel{Cantelli lemma(see [3℄) to the events Ck. To this end we need an upper estimation for the expression�2M := MXk=1 MXr=1 (P (Ck \ Cr)� P (Ck)P (Cr)) :Let us apply Lemma 3.2 with r > k and s = n(r) � n(k). By supposition,n2 �p2 + q2�k � 4 log k; s2 �p2 + q2�r � 4 log r; (4.2)hene��P (Ck \ Cr)� P (Ck)P (Cr)�� � ns(s� n)2P (Ck)++ 4k3 (log r)1=2 �p2 + q2�r=2 + 8 (log r)1=2 ��r + 72k6 (log r)3=2 ��r + 4r�3:



SEPARATING SYSTEMS OF RANDOM SUBSETS 11Here ns(s� n)2 = ns �1� ns ��2 ; ns = �p2 + q2�(r�k)=2 +O ��p2 + q2��r� ;from whih it follows that�2M � MXk=1P (Ck) + 2 X1�k<r�M��P (Ck \ Cr)� P (Ck)P (Cr)��� MXk=1P (Ck) + 2 X1�k<r�M P (Ck) ns(s� n)2 +O(1)= MXk=1P (Ck) +O X1�k<r�M P (Ck) �p2 + q2�(r�k)=2!= MXk=1P (Ck) +O M�1X̀=1 �p2 + q2�`=2M�`Xk=1 P (Ck)!= O MXk=1P (Ck)! :The Erd}os{R�enyi lemma implies that, with probability 1, in�nitely many of theevents Ck our. SinePP �Dk;n(k)� <1, Dk;n(k) ours for every k large enough,thus  (k) 2 LUC, indeed.Theorem 4.2 (LUC/LLC of Tk). Let  be a positive dereasing funtion, for whih�p2 + q2��k=2  (k) inreases. The probability that �p2 + q2�k=2 Tk �  (k) holds forin�nitely many k is equal to 0 or 1, aording as the sum1Xk=1 (k)2 (4.3)is �nite or in�nite.Proof. The proof goes along the same lines as that of Theorem 4.1. When (4.3)is �nite, then P ��p2 + q2�k=2 Tk �  (k)� � 12 (k)2, hene the LLC result followsfrom the ordinary Borel{Cantelli lemma.When (4.3) is in�nite, we an suppose that P ��p2 + q2�k=2 Tk �  (k)� ! 0,that is,  (k) ! 0. We an on�ne ourselves to the ase 1=k <  (k) without lossof generality. Let n = n(k) = h�p2 + q2��k=2  (k)i, and Ck = fTk > ng \ Dk;n.Again, the Erd}os{R�enyi lemma will be applied, but this time to the events Ck.Note that (4.2) is replaed with inequality n �p2 + q2�k=2 � 1=k.For the estimation of�2M = MXk=1 MXr=1 �P �Ck \ Cr�� P �Ck�P �Cr��= MXk=1 MXr=1 (P (Ck \ Cr)� P (Ck)P (Cr))



12 TAM�AS F. M�ORIit is suÆient to deal with ��P (Ck \ Cr)�P (Ck)P (Cr)�� again, but Lemma 3.2 hasto be replaed with another, very similar result, namely��P (Ckn \ Crs)� P (Ckn)P (Crs)�� � ns �p2 + q2�r ++ �s+ k3n� �p2 + q2�r + 4s�r + 9s3 �p2 + q2�r k6�r + 4r�3:The only di�erene is in the estimation of e��� � e��. Clearly,e��� � e�� = �1� �1� e����� � e�� � 1� � �1� e���� e��= (1� �) �1� e��� � 2ns � = ns �p2 + q2�r :Here ns �p2 + q2�r �  (k)2 �p2 + q2�(r�k)=2 ;therefore we an write�2M � MXk=1P �Ck�+ 2 X1�k<r�M��P (Ck \ Cr)� P (Ck)P (Cr)��� MXk=1P �Ck�+ 2 X1�k<r�M  (k)2 �p2 + q2�(r�k)=2 +O(1)= O MXk=1P �Ck�! ;ompleting the proof.Remark. A sequene xi of real numbers is alled quasi-inreasing (quasi-dereasing,resp.), if the supremum (in�mum) of the set of di�erenes fxi � xj : 1 � i < jg is�nite. From the proofs it an be seen that the sequene  (k) in Theorems 4.1and 4.2 need not be monotone: it is suÆient to require that �p2 + q2��k=2  (k)inreases and{ (in Theorem 4.1) log (k) is quasi-inreasing,{ (in Theorem 4.2) log (k) is quasi-dereasing.Finally, we adapt our results to the sequene Yn.Theorem 4.3 (UUC/ULC of Yn). Let k(n) be a a non-dereasing sequene ofpositive integers, for whih k(n)� 2Logn is quasi-inreasing. The probability thatYn � k(n) holds for in�nitely many n is equal to 0 or 1, aording as the sum1Xn=1n �p2 + q2�k(n) (4.4)is �nite or in�nite.Proof. Let n(k) = minfn : k(n) = kg, i.e., k(n) = k for n(k) � n < n(k+1). De�ne (k) = �p2 + q2�k=2 (n(k + 2)� 1), then log (k) is quasi-dereasing. Obviously,



SEPARATING SYSTEMS OF RANDOM SUBSETS 13Yn � k(n), Tk(n)�1 � n, thus Yn � k(n) holds for in�nitely many n if and only ifTk � n(k + 2)� 1, that is, �p2 + q2�k=2 Tk �  (k) for in�nitely many k. We shallprove that (4.3) and (4.4) are equionvergent.Sine14�n(k + 1)2 � n(k)2� �p2 + q2�k � n(k+1)�1Xn=n(k) n �p2 + q2�k(n)� 12�n(k + 1)2 � n(k)2��p2 + q2�k ;we obtain, on one hand, that1Xn=1n �p2 + q2�k(n) � 14 1Xk=k(1) n(k)2 ��p2 + q2�k�1 � �p2 + q2�k� � n(1)2� pq4 1Xk=k(1) (k)2 � n(1)2;thus the �niteness of (4.4) implies that of (4.3).On the other hand, if n(k)2 �p2 + q2�k ! 0, that is,  (k)! 0, then1Xn=n(k(1)+2)n �p2 + q2�k(n) � 12 1Xk=k(1)+2 n(k)2 ��p2 + q2�k�1 � �p2 + q2�k�� pq 1Xk=k(1) (k)2:If (4.3) is �nite, then  (k)! 0, therefore (4.4) is also onvergent.Theorem 4.4 (LUC/LLC of Yn). Set f(x) = (1 + x)e�x and let k(n) be a non-dereasing sequene of positive integers, for whih k(n)�2Logn is quasi-dereasing.Then the probability that Yn � k(n) holds for in�nitely many n is equal to 0 or 1,aording as the sum 1Xn=1 1nf � 12n2 �p2 + q2�k(n)� (4.5)is �nite or in�nite.Proof. As in the proof of Theorem 4.3, let n(k) = minfn : k(n) = kg. This timede�ne  (k) = �p2 + q2�k=2 (n(k) + 1), then log (k) is quasi-inreasing. Clearly,Yn � k(n), Tk(n) � n+ 1, thus Yn � k(n) holds for in�nitely many n if and onlyif Tk � n(k) + 1, that is, �p2 + q2�k=2 Tk �  (k) for in�nitely many k. Under theondition k(n)�2Logn! �1 or equivalently,  (k)!1, we will show that (4.1)and (4.5) are equionvergent.



14 TAM�AS F. M�ORIOn one hand we have2 n(k+1)�1Xn=n(k) 1nf � 12n2 �p2 + q2�k(n)� � n(k+1)�1Xn=n(k) n �p2 + q2�k exp�� 12n2 �p2 + q2�k�� Z n(k+1)n(k) x �p2 + q2�k exp�� 12x2 �p2 + q2�k� dx= exp�� 12n(k)2 �p2 + q2�k�� exp�� 12n(k + 1)2 �p2 + q2�k� ;hene (4.5) is not less than12 1Xk=1�exp�� 12n(k)2 �p2 + q2�k�� exp�� 12n(k)2 �p2 + q2�k�1�� :Hereexp�� 12n(k)2 �p2 + q2�k�� exp�� 12n(k)2 �p2 + q2�k�1� �� exp�� 12n(k)2 �p2 + q2�k� � exp �� 12 (k)2� :Consequently, if (4.5) is �nite, so is (4.1).On the other hand,n(k+1)�1Xn=n(k) 1nf � 12n2 �p2 + q2�k(n)�� Z n(k+1)�1n(k)�1 x �p2 + q2�k exp�� 12x2 �p2 + q2�k� dx� exp�� 12 (n(k)� 1)2 �p2 + q2�k� : (4.6)If n(k) �p2 + q2�k � 1, (4.6) an be estimated by exp �2� 12 (k)2�.If n(k) �p2 + q2�k > 1, (4.6) an be estimated by exp�� 18 �p2 + q2��k�, the latterterms produe a onvergent series. Thus, if (4.1) is �nite, so is (4.5).Now the proof an be ompleted by applying Theorem 4.1. If (4.5) is �nite, thenthere exists a subsequene of positive integers along whih n2 �p2 + q2�k(n) ! 1,that is, k(n) � 2Logn ! �1. By its quasi-dereasing property, k(n) � 2Logntends to �1 along the positive integers. If (4.5) is in�nite and k(n)� 2Logn doesnot tend to �1, the Hewitt{Savage 0{1 law an be applied in the same way as inthe proof of Theorem 4.1.Corollary 4.1. With probability 1,Tn � 2Logn+ Log logn+ (1 + ") Log log logn for large n,Tn > 2Logn+ Log logn+ Log log logn in�nitely often,Tn � �2Logn� Log log logn� Log 2� 2 Log log lognlog logn � in�nitely often,Tn � �2Logn� Log log logn� Log 2� (2 + ")Log log lognlog logn � for large n.
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