
ON THE DISTRIBUTION OF SUMSOF OVERLAPPING PRODUCTSTam�as F. M�oriE�otv�os Lor�and University, BudapestAbstra
t. We 
onsider a series of overlapping produ
ts of the formX1X2+X2X3+X3X4 + � � � where X1;X2; : : : are independent Bernoulli random variables. We
ompute the exa
t distribution of every tail se
tion for a parti
ular 
hoi
e of the X's,thus extending a result of Cs�org}o and Wu [2℄. As a generalization, sums of multipleprodu
ts are also studied. 1. Introdu
tionLet X1; X2; : : : be independent Bernoulli random variables with distributionP (Xn = 1) = pn = 1� P (Xn = 0). For i � 1 letNi = 1Xr=i XrXr+1; (1.1)and let gi(s) = E �sNi� denote the probability generating fun
tion of Ni. We areinterested in the exa
t distribution of Ni, parti
ularly in the 
ase wherepn = ��+ n� 1 ; (1.2)with 0 < � � �. There exist 
ertain results for parti
ular 
hoi
es of � and �.The distribution of Ni together with that of its �nite se
tions was 
omputed in[2℄ by Cs�org}o and Wu in the parti
ular 
ase where (1.2) holds with � = 1. For� = � the distribution of N1 is known to be Poisson with mean �. This follows,for instan
e, from a more general result of Arratia, Barbour and Tavar�e [1℄ onthe limiting distribution of the 
y
le lengths in a random permutation under theEwens sampling formula (see p.95 of [3℄). In [1℄ purely 
ombinatorial methods wereused, while Cs�org}o and Wu found 
ertain re
ursive formulas for the probabilities inquestion by probabilisti
 arguments. Sin
e their method did not seem appli
ablewhen � 6= 1, the 
ase of general � and � remained open.1991 Mathemati
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2 TAM�AS F. M�ORIIn Se
tion 2 of the present note we will show that, under (1.2), the distributionof Ni is identi
al with a beta mixture of Poisson distributions. Our approa
h aimsat the probability generating fun
tions instead of the probabilities themselves. Intheir paper [2℄ the authors also 
all for the study of series similar to (1.1) but withmultiple produ
ts as summands. In Se
tion 3 we derive some general formulas
on
erning the distribution of random variablesN (d)i = 1Xr=i XrXr+1 � � �Xr+d;with d � 1 (for d = 1 this 
oin
ides with (1.1)). In parti
ular, the distribution ofN (2)i will be 
omputed expli
itly in the 
ase (1.2).2. Main resultsIn order that the series de�ning N1 
onverge with probability 1 it is suÆ
ient(and also ne
essary) that 1Xr=1 prpr+1 <1; (2.1)Indeed, let No = 1Xr=1X2r�1X2r; Ne = 1Xr=1X2rX2r+1;then the ne
essary and suÆ
ient 
ondition for the two series to 
onverge is thatthe events fXrXr+1 = 1g o

ur only for �nitely many values of r. Sin
e theseseries have independent summands, both parts of the Borel{Cantelli lemma 
an beapplied.In the sequel we always suppose that (2.1) holds. Note that this 
ondition evenimplies the �niteness of g1(s) for every positive s:g1(s) = E �sNosNe� � E1=2 �s2No�E1=2 �s2Ne�= 1Yr=1 �1 + (s2 � 1)p2r�1p2r�1=2 1Yr=1 �1 + (s2 � 1)p2rp2r+1�1=2� 1Yr=1 exp � 12 (s2 � 1)p2r�1p2r� 1Yr=1 exp � 12 (s2 � 1)p2rp2r+1�= exp�12 (s2 � 1) 1Xr=1 prpr+1� <1:For n � 0 let an;i = E�Nin �. Then we havegi(s) = 1Xn=0 an;i(s� 1)n:The generating fun
tions gi(s) and their 
oeÆ
ients an;i are determined by thefollowing re
ursion.



SUMS OF OVERLAPPING PRODUCTS 3Lemma 2.1.gi(s) = [1 + pi(s� 1)℄ gi+1(s)� pi (1� pi+1) (s� 1)gi+2(s);a0;i = 1;an;i � an;i+1 = pi (an�1;i+1 � an�1;i+2) + pipi+1an�1;i+2; n � 1;an;i ! 0 as i!1; n � 1:Proof. Let us apply the theorem of total expe
tation to gi(s) a

ording to the �rstr � i for whi
h Xr = 0. We obtaingi(s) = (1� pi) gi+1(s) + 1Xr=i+1 pi � � � pr�1 (1� pr) sr�i�1gr+1(s)= (1� pi) gi+1(s) + pi (1� pi+1) gi+2(s) + pis [gi+1(s)� (1� pi+1) gi+2(s)℄= [1 + pi(s� 1)℄ gi+1(s)� pi (1� pi+1) (s� 1)gi+2(s);whi
h is just the �rst line of the lemma. By expanding the generating fun
tionsand 
omparing the 
orresponding 
oeÆ
ients on the two sides one arrives at these
ond and third lines. The last relation follows from the monotone 
onvergen
etheorem.As a 
orollary, it immediately follows thata1;i = 1Xj=i pjpj+1;whi
h is otherwise due to the fa
t that a1;i = ENi. By 
ontinuing the iteration we
an derive expli
it formulas for an;i; but they be
ome more and more 
ompli
atedas n grows. Compli
ated formulas be
ome simpler in the parti
ular 
ase (1.2). Forthe sake of brevity let us write�i;j = pipi+1 � � � pi+j ; i � 1; j � 0; 
i = 1 + �i ; i � 1:These quantities then satisfy the re
ursion�i;r = �r (�i;r�1 � �i+1;r�1) (2.3)for arbitrary integers r � 1, i � 1.Theorem 2.1. an;i � an;i+1 = �i;n
1
2 � � � 
n�1; (2.4)an;i = �n�i;n�1
1 � � � 
n�1 = �nn! n�1Yr=0 �+ r�+ i+ r � 1 : (2.5)Proof. First of all, noti
e that (2.5) follows from (2.4) by summation, sin
ean;i � an;i+1 = �n (�i;n�1 � �i+1;n�1) 
1
2 � � � 
n�1



4 TAM�AS F. M�ORIby (2.3).Now the proof 
an be 
arried by indu
tion over n. For n = 1 the third line ofLemma 2.1 reads as a1;i � a1;i+1 = pipi+1 = �i;1. In order to prove (2.4) for n+ 1with a general n let us use Lemma 2.1 again, then apply the indu
tion hypothesisto an;i+1 � an;i+2 and an;i+2. We obtain thatan+1;i � an+1;i+1 = pi�i+1;n
1
2 � � � 
n�1 + pipi+1 �n �i+2;n�1
1
2 � � � 
n�1= �i;n+1
1
2 � � � 
n�1�1 + �n�= �i;n+1
1
2 � � � 
n;as needed.Thus the generating fun
tions aregi(s) = 1Xn=0 [�(s� 1)℄nn! n�1Yr=0 �+ r�+ i� 1 + r : (2.6)This fun
tion is known as the 
on
uent hypergeometri
 fun
tion1F1[�; �+ i� 1; �(s� 1)℄;and the 
orresponding probability distribution is the so-
alled beta mixture of Pois-son distribution, see p.330 of [4℄, whi
h 
an be obtained in the following way. LetV be a random variable of beta distribution with parameters � and �� �+ i� 1,and let the 
onditional distribution of �, supposed V is given, be Poisson withparameter �V ; that is,P (� = kjV ) = (�V )kk! e��V ; k = 0; 1; : : : :Then the probability generating fun
tion of � is just gi.By expanding (2.6) into power series we obtain the probability P (Ni = k) as the
oeÆ
ient of sk.Corollary 2.1.P (Ni = k) = 1Xn=k �nn! n�1Yr=0 �+ r�+ i� 1 + r (�1)n�k�nk�= �kk! 1Xj=0 (��)jj! j+k�1Yr=0 �+ r�+ i� 1 + r : (2.7)Transparently, N1 possesses the Poisson(�) distribution when � = �.



SUMS OF OVERLAPPING PRODUCTS 53. Sums of multiple produ
tsLet d � 1, andN (d)i = 1Xr=i XrXr+1 � � �Xr+d; g(d)i (s) = E �sN(d)i � : (3.1)Similarly to the 
ase d = 1 it is easy to see that the 
onvergen
e of the series�1;d + �2;d + � � � is suÆ
ient for the generating fun
tions g(d)i (s) to be �nite forarbitrary positive s. Again, letg(d)i (s) = 1Xn=0 a(d)n;i(s� 1)n:Then the following analogue to Lemma 2.1 
an be proved.Lemma 3.1.g(d)i (s) = g(d)i+1(s) + (s� 1) d�1Xj=0 �i;j hg(d)i+j+1(s)� g(d)i+j+2(s)i+ (s� 1)�i;d g(d)i+d+1(s);a(d)0;i = 1;a(d)n;i � a(d)n;i+1 = d�1Xj=0 �i;j ha(d)n�1;i+j+1 � a(d)n�1;i+j+2i+ �i;da(d)n�1;i+d+1; n � 1;a(d)n;i ! 0 as i!1; n � 1:Proof. The re
ursion for the generating fun
tions 
an be proved in the same wayas it was done in Se
tion 2 in the 
ase of d = 1. Then the other re
ursion for the
oeÆ
ients will immediately follow. By the theorem of total expe
tation we haveg(d)i (s) = (1� pi) g(d)i+1(s) + d�1Xj=1 �i;j�1 (1� pi+j) g(d)i+j+1(s)++ 1Xj=d �i;j�1 (1� pi+j) sj+1�dg(d)i+j+1(s)= (1� pi) g(d)i+1(s) + d�1Xj=1 �i;j�1 (1� pi+j) g(d)i+j+1(s)++ shpig(d)i+1(s)� d�1Xj=1 �i;j�1 (1� pi+j) g(d)i+j+1(s)i= g(d)i+1(s) + (s� 1)pig(d)i+1(s)� (s� 1) d�1Xj=1 �i;j�1 (1� pi+j) g(d)i+j+1(s)= g(d)i+1(s) + (s� 1) d�1Xj=0 �i;j hg(d)i+j+1(s)� g(d)i+j+2(s)i+ (s� 1)�i;d g(d)i+d+1(s):



6 TAM�AS F. M�ORIIn the rest of the paper we are going to study the 
ase d = 2 in detail. Then the
oeÆ
ients satisfya(2)n;i � a(2)n;i+1 = pi ha(2)n�1;i+1 � a(2)n�1;i+2i++ pipi+1 ha(2)n�1;i+2 � a(2)n�1;i+3i+ pipi+1pi+2a(2)n�1;i+3: (3.2)Let us 
hoose the probabilities a

ording to (1.2). From (3.1) we �rst geta(2)1;i � a(2)1;i+1 = �i;2; a(2)1;i = �2�i;1;and then by plugging ba
k into (3.2) we obtaina(2)2;i � a(2)2;i+1 = �i;3 + �i;4 + �2�i;4 = �i;3 + 
2�i;4;a(2)2;i = �3�i;2 + �4 
2�i;3;a(2)3;i � a(2)3;i+1 = [�i;4 + 
2�i;5℄ + [�i;5 + 
2�i;6℄ + ��3�i;5 + �4 
2�i;6�= �i;4 + (
2 + 
3)�i;5 + 
2
4�i;6;a(2)3;i = �4�i;3 + �5 (
2 + 
3)�i;4 + �6 
2
4�i;5;and so on, one after another. For the general formula introdu
e A(d)0;r = 1, andA(d)j;r = Xd�t1; t1+d�t2; ��� ; tj�1+d�tj; tj+d�r 
t1
t2 � � � 
tjfor j � 1; r � (j + 1)d. Obviously, A(d)j;r is a polynomial of �, with degree notgreater than j.Theorem 3.1.a(2)n;i � a(2)n;i+1 = nXj=1 �i;n+jA(2)j�1;n+j ; a(2)n;i = nXj=1 �i;n+j�1 �n+ j A(2)j�1;n+j : (3.3)Proof. This 
an be proved again by indu
tion. Consider the re
ursion (3.2) andapply the indu
tion hypothesis to the right-hand side.a(2)n+1;i � a(2)n+1;i+1 = pi nXj=1 �i+1;n+jA(2)j�1;n+j + pipi+1 nXj=1 �i+2;n+jA(2)j�1;n+j++ pipi+1pi+2 nXj=1 �i+3;n+j�1 �n+ j A(2)j�1;n+j= nXj=1 [�i;n+j+1 + �i;n+j+2
n+j ℄A(2)j�1;n+j= �i;n+2A(2)0;n+1 + �i;2n+2
2nA(2)n�1;2n++ nXj=2 �i;n+j+1 hA(2)j�1;n+j + 
n+j�1A(2)j�2;n+j�1i :



SUMS OF OVERLAPPING PRODUCTS 7It is easy to see that A(2)0;n+1 = A(2)0;n+2, 
2nA(2)n�1;2n = A(2)n;2n+2; furthermoreA(2)j�1;n+j + 
n+j�1A(2)j�2;n+j�1 = A(2)j�1;n+j+1; 2 � j � n:Now, the �rst formula of (3.3) immediately follows, while the se
ond one is obtainedfrom the �rst one by summation.As a 
orollary we 
an write down the generating fun
tions.g(2)i (s) = 1 + 1Xn=1(s� 1)n nXj=1 �i;n+j�1 �n+ j A(2)j�1;n+j= 1 + 1Xr=1 �i;r �r + 1 X0�j<r=2A(2)j;r+1(s� 1)r�j : (3.4)Here (3.4) better re
e
ts how the generating fun
tion depends on �: g(2)i (s) dependson i and � through i+ �, and i+ � is only 
ontained in the fa
tors �i;r.Finally, the distribution of N (2)i 
an be obtained from (3.4) by expanding it intopower series.Corollary 3.1. For k = 0; 1; 2; : : :P �N (2)i = k� = 1Xn=k(�1)n�k�nk� nXj=1 �i;n+j�1 �n+ j A(2)j�1;n+j :A
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