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ABSTRACT. We consider a series of overlapping products of the form X; Xo+4+ X2 X3+
X3X4 + -+ where X1, X9,... are independent Bernoulli random variables. We
compute the exact distribution of every tail section for a particular choice of the X’s,
thus extending a result of Csérgé and Wu [2]. As a generalization, sums of multiple
products are also studied.

1. INTRODUCTION

Let Xi, Xo,... be independent Bernoulli random variables with distribution
P(X,=1)=p,=1-P(X, =0). Fori>1let

oo
N; = ZXTXM, (1.1)

r=i

and let g;(s) = E (st) denote the probability generating function of N;. We are
interested in the exact distribution of N;, particularly in the case where

A

pyr— (12)

Pn =

with 0 < A < p. There exist certain results for particular choices of A and pu.
The distribution of N; together with that of its finite sections was computed in
[2] by Csorgd and Wu in the particular case where (1.2) holds with A = 1. For
A = u the distribution of N; is known to be Poisson with mean A. This follows,
for instance, from a more general result of Arratia, Barbour and Tavaré [1] on
the limiting distribution of the cycle lengths in a random permutation under the
Ewens sampling formula (see p.95 of [3]). In [1] purely combinatorial methods were
used, while Csérgé and Wu found certain recursive formulas for the probabilities in
question by probabilistic arguments. Since their method did not seem applicable
when A # 1, the case of general y and A remained open.
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In Section 2 of the present note we will show that, under (1.2), the distribution
of Nj; is identical with a beta mixture of Poisson distributions. Our approach aims
at the probability generating functions instead of the probabilities themselves. In
their paper [2] the authors also call for the study of series similar to (1.1) but with
multiple products as summands. In Section 3 we derive some general formulas
concerning the distribution of random variables

Nz(d> — ZXTXT‘+1 .. 'Xr+d:
r=q

with d > 1 (for d = 1 this coincides with (1.1)). In particular, the distribution of
N® will be computed explicitly in the case (1.2).

K3

2. MAIN RESULTS

In order that the series defining N; converge with probability 1 it is sufficient
(and also necessary) that

o0
Zprpr+1 < e, (21)
r=1
Indeed, let
N, = ZX2T71X27’: N, = ZererH;
r=1 r=1

then the necessary and sufficient condition for the two series to converge is that
the events {X,X,; =1} occur only for finitely many values of r. Since these
series have independent summands, both parts of the Borel-Cantelli lemma can be
applied.

In the sequel we always suppose that (2.1) holds. Note that this condition even
implies the finiteness of g (s) for every positive s:

91(8) — E(SNosNe) S E1/2 (SQNO) E1/2 (SQNe)
ad 1/2 ad 1/2
= H [1 + (52 - 1)p2r71p2r} / H [1 + (32 - 1)p27’p2r+1} /
r=1

r=1

< [ exp (3(s* = Dpar—1par) [] exp (3(s* = Dp2rparia)
r—=1 r=1
= eXp(%(S2 — 1) Zprp,«ﬂ) < oC.
r=1
Forn > 0let an,; = E(Nn) Then we have

gi(s) = Z an,i(s —1)™.
n=0

The generating functions g;(s) and their coefficients a, ; are determined by the
following recursion.



SUMS OF OVERLAPPING PRODUCTS 3

Lemma 2.1.

gi(s) = [1+pi(s = D] gi+1(s) = pi (1 = pit1) (s = 1)gita(s),

ap; = 1,

Qn,i = Gn,it1 = Di (Qn—1,i41 — Gn—1,i+2) + PiPi+10n—1,i+2, 7 > 1,
an,i — 0 asi— o0, n>1.

Proof. Let us apply the theorem of total expectation to g;(s) according to the first
r >4 for which X, = 0. We obtain

e}
9i(s) = (1 =pi) gixa(s) + D pi--pr1 (1=pp)s™ " Hgppa(s)
r=i+1

= (L= i) git1(s) + pi (L = pit1) giv2(s) + pis [gir1(s) — (1 = pit1) gito(s)]
=1 +pi(s = D]gita(s) = pi (1 = piy1) (s = Dgiya(s),
which is just the first line of the lemma. By expanding the generating functions
and comparing the corresponding coefficients on the two sides one arrives at the

second and third lines. The last relation follows from the monotone convergence
theorem.

As a corollary, it immediately follows that

(e}
ayi = Z PiPj+1;
j=i

which is otherwise due to the fact that a; ; = EN;. By continuing the iteration we
can derive explicit formulas for a,, ;; but they become more and more complicated
as n grows. Complicated formulas become simpler in the particular case (1.2). For
the sake of brevity let us write

) . A
Bi,j = PiPiy1 - Divj, £ 21,520, ¢ =1+? i> 1

These quantities then satisfy the recursion

A
Bir = - (Bir—1 — Bit1,r—1) (2.3)
for arbitrary integers r > 1,4 > 1.
Theorem 2.1.
(pi — Gnitl = BipCiC2  Cp_1, (2.4)
DI
i | ey 25)

Proof. First of all, notice that (2.5) follows from (2.4) by summation, since
A
n

Qn,i = Gn,it1 = — (Bin—1 — Biti,n—1)Ci1C2 - Cn_1
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by (2.3).

Now the proof can be carried by induction over n. For n = 1 the third line of
Lemma 2.1 reads as a1,; — 61,541 = piPi+1 = Pi1. In order to prove (2.4) for n +1
with a general n let us use Lemma 2.1 again, then apply the induction hypothesis
to ap,it1 — Qn,itr2 and ay i42. We obtain that

Ont1,5 — Ont1,ib1 = Pifit1,nC1C2 "+ Cpn1 + DiDit1 - Bit2,n—1C1C2 "+ Cp—1

A
= Bi,n+1€1C2 "+ Cp—i (1 + E)

= 5z‘,n+10102 ©r e Cp,
as needed.

Thus the generating functions are

gi(s) = z_:o [)\(8;!1)}” ];[0 ‘u_’_)i\__"?ld_'_r, (2.6)

This function is known as the confluent hypergeometric function
lFl[)\nu +i— 1,)\(8 - 1)]a

and the corresponding probability distribution is the so-called beta mixture of Pois-
son distribution, see p.330 of [4], which can be obtained in the following way. Let
V be a random variable of beta distribution with parameters A and p — A +i — 1,
and let the conditional distribution of &, supposed V is given, be Poisson with
parameter A\V'; that is,

PE=kV)=

Then the probability generating function of £ is just g;.

By expanding (2.6) into power series we obtain the probability P (N; = k) as the
coefficient of s*.

Corollary 2.1.

n—1

= N I e ()

_ NN ”ﬁl A7

k!j:O I p+i—1+r

Transparently, N; possesses the Poisson(A) distribution when A = p.
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3. SUMS OF MULTIPLE PRODUCTS

Let d > 1, and

0
(d)
=3 XX X, gV = B (M), (3.1)

Similarly to the case d = 1 it is easy to see that the convergence of the series
Bi,a + P2,a + - -+ is sufficient for the generating functions g§d>(s) to be finite for
arbitrary positive s. Again, let

Zarj s—1"

Then the following analogue to Lemma 2.1 can be proved.

Lemma 3.1.

d—1
9i(5) = 921 (8) + (s = 1) By [9041(5) = 9 0s4a ()] + (5 = DBia 9D (9),

j=0
(d) _
ag,; =1,
d-1
d) d  _ (@ (d) o (d)
Upi — Apiv1 = ) Bij [an—l,i+j+1 =y ijyo| T Bid0n 1 e P21
i=0
d .
a 2-—>0asz—>oo, n>1

Proof. The recursion for the generating functions can be proved in the same way
as it was done in Section 2 in the case of d = 1. Then the other recursion for the
coefficients will immediately follow. By the theorem of total expectation we have

d—1

d
gz( )( ) (1 _pz) gz(+1 +ZBW 1 ( 1_p1+])gz(+>]+l( )+
j=1

oo
L1-d (d
+ E Bije1 (1 —piyj) 87t d9§+>j+1(3)
j=d

d
(1 pz gz+1 +Zﬂz,] 1 pi+j)g§+>j+1(s)+

+s [plgz(Jrl Zﬂm 1 ( 1_p2+3)gz(+>]+1()

j=1
d—1
d d d
= gz(+)1(5) + (s — 1)pigz(+)1(5) —(s—1) ZBM—I (1- pi+j) g§+)j+1(3)
i=1

d—1
=90 () + (5= 1Y B [9011(9) = 91000 (9)] + (5 = VBra gLy ()
J=0
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In the rest of the paper we are going to study the case d = 2 in detail. Then the
coefficients satisfy

_ (2) (2)
— Qi = D |:an—1,i+1 - an—l,i+2:| +
2 2 2
+ PiPit1 [agzll,i+2 - agzll,i+3} +pipi+1pi+2a£1—)1,i+3' (3.2)

Let us choose the probabilities according to (1.2). From (3.1) we first get

2 2 2 A
ag z) - a§72+1 = Biz2, ag} = 561‘,17

)

and then by plugging back into (3.2) we obtain

y A
agzl) - agz,gﬂ = Bi3 + Bia+ 552‘,4 = B3+ 204,
. A A
ang = gﬂi,z + 10251',37
2) _ (2 A A
az; —az ;1 = [Bia +c2fBis] + [Bis + c2Bi6] + gﬂm + 10251,6
= Bia+ (c2 + ¢3)Bis + c2cafBi,
> A A A
aézz) = Zﬁz’,s + 3(02 +¢3)Bia + 60204&',5,

and so on, one after another. For the general formula introduce Aé‘i), =1, and

(d) _ E:
Aj,r = Ct1Cpy " " ° Ctj

d<ty, t1+d<ts, -, t; 1+d<t;, t;+d<r

d

,r

for j > 1, r > (j + 1)d. Obviously, A;
greater than j.

is a polynomial of A, with degree not

Theorem 3.1.

2 2 - 2 2 < A 2
ai,i- - agm,z'+1 = Zﬂi7n+j‘4§'—)1,n+j7 agz} = Zﬁim-s-j—l nt g Ag'—)l,n+j- (3.3)

j=1 j=1

Proof. This can be proved again by induction. Consider the recursion (3.2) and
apply the induction hypothesis to the right-hand side.

n n
2 2 2 2
aill’i - a;jml =p; Zﬁi+1,n+jA§'jl’n+j + pipi+1 Zﬁi+2,n+j‘4§‘—)1,n+j+
j=1 Jj=1
- Ao
+ PiPi+1Di+2 Z Bits.ntj—1 ntj A g
j=1

n
2
E [Bin+i+1 + Bintj+2Cntj] A;—)l,n+j
i=1

Bims2 AL, (1 + Biniacan A | 5+

n
2 2
+ E Binti+1 [Ag'—)l,n+j +Cn+J*1A§'—)27n+J‘—1
j=2
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It is easy to see that A((leﬂ = Aff,)wz, CQHASELM = Af,‘)mw; furthermore
(2) (2) — A2 ;
Aj g T enti—1 A0 i = A e, 250 S

Now, the first formula of (3.3) immediately follows, while the second one is obtained
from the first one by summation.

As a corollary we can write down the generating functions.

n4j Jobnti

g2 =143 (s = )" Binrjor AP
n=1 j=1

o0 )\ . i
=14 By D Aplas -1 (3.4)
r=1

0<j<r/2

Here (3.4) better reflects how the generating function depends on p: gl@) (s) depends

on i and p through ¢ + p, and ¢ + p is only contained in the factors 3; ..
Finally, the distribution of Ni(Q) can be obtained from (3.4) by expanding it into
power series.

Corollary 3.1. For k=0,1,2,...

oo ~ n n A ‘
P (NZ@) _ k) =3 (-1 <k> > Bt —— AD
n=k j=1 J
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