
ON THE DISTRIBUTION OF SUMSOF OVERLAPPING PRODUCTSTam�as F. M�oriE�otv�os Lor�and University, BudapestAbstrat. We onsider a series of overlapping produts of the formX1X2+X2X3+X3X4 + � � � where X1;X2; : : : are independent Bernoulli random variables. Weompute the exat distribution of every tail setion for a partiular hoie of the X's,thus extending a result of Cs�org}o and Wu [2℄. As a generalization, sums of multipleproduts are also studied. 1. IntrodutionLet X1; X2; : : : be independent Bernoulli random variables with distributionP (Xn = 1) = pn = 1� P (Xn = 0). For i � 1 letNi = 1Xr=i XrXr+1; (1.1)and let gi(s) = E �sNi� denote the probability generating funtion of Ni. We areinterested in the exat distribution of Ni, partiularly in the ase wherepn = ��+ n� 1 ; (1.2)with 0 < � � �. There exist ertain results for partiular hoies of � and �.The distribution of Ni together with that of its �nite setions was omputed in[2℄ by Cs�org}o and Wu in the partiular ase where (1.2) holds with � = 1. For� = � the distribution of N1 is known to be Poisson with mean �. This follows,for instane, from a more general result of Arratia, Barbour and Tavar�e [1℄ onthe limiting distribution of the yle lengths in a random permutation under theEwens sampling formula (see p.95 of [3℄). In [1℄ purely ombinatorial methods wereused, while Cs�org}o and Wu found ertain reursive formulas for the probabilities inquestion by probabilisti arguments. Sine their method did not seem appliablewhen � 6= 1, the ase of general � and � remained open.1991 Mathematis Subjet Classi�ation. Primary 60E05, Seondary 62E15,.Key words and phrases. Ewens sampling formula, beta mixture of Poisson distribution, gen-erating funtion.Researh supported by the Hungarian National Foundation for Sienti� Researh, Grant No.T-29621 Typeset by AMS-TEX1



2 TAM�AS F. M�ORIIn Setion 2 of the present note we will show that, under (1.2), the distributionof Ni is idential with a beta mixture of Poisson distributions. Our approah aimsat the probability generating funtions instead of the probabilities themselves. Intheir paper [2℄ the authors also all for the study of series similar to (1.1) but withmultiple produts as summands. In Setion 3 we derive some general formulasonerning the distribution of random variablesN (d)i = 1Xr=i XrXr+1 � � �Xr+d;with d � 1 (for d = 1 this oinides with (1.1)). In partiular, the distribution ofN (2)i will be omputed expliitly in the ase (1.2).2. Main resultsIn order that the series de�ning N1 onverge with probability 1 it is suÆient(and also neessary) that 1Xr=1 prpr+1 <1; (2.1)Indeed, let No = 1Xr=1X2r�1X2r; Ne = 1Xr=1X2rX2r+1;then the neessary and suÆient ondition for the two series to onverge is thatthe events fXrXr+1 = 1g our only for �nitely many values of r. Sine theseseries have independent summands, both parts of the Borel{Cantelli lemma an beapplied.In the sequel we always suppose that (2.1) holds. Note that this ondition evenimplies the �niteness of g1(s) for every positive s:g1(s) = E �sNosNe� � E1=2 �s2No�E1=2 �s2Ne�= 1Yr=1 �1 + (s2 � 1)p2r�1p2r�1=2 1Yr=1 �1 + (s2 � 1)p2rp2r+1�1=2� 1Yr=1 exp � 12 (s2 � 1)p2r�1p2r� 1Yr=1 exp � 12 (s2 � 1)p2rp2r+1�= exp�12 (s2 � 1) 1Xr=1 prpr+1� <1:For n � 0 let an;i = E�Nin �. Then we havegi(s) = 1Xn=0 an;i(s� 1)n:The generating funtions gi(s) and their oeÆients an;i are determined by thefollowing reursion.



SUMS OF OVERLAPPING PRODUCTS 3Lemma 2.1.gi(s) = [1 + pi(s� 1)℄ gi+1(s)� pi (1� pi+1) (s� 1)gi+2(s);a0;i = 1;an;i � an;i+1 = pi (an�1;i+1 � an�1;i+2) + pipi+1an�1;i+2; n � 1;an;i ! 0 as i!1; n � 1:Proof. Let us apply the theorem of total expetation to gi(s) aording to the �rstr � i for whih Xr = 0. We obtaingi(s) = (1� pi) gi+1(s) + 1Xr=i+1 pi � � � pr�1 (1� pr) sr�i�1gr+1(s)= (1� pi) gi+1(s) + pi (1� pi+1) gi+2(s) + pis [gi+1(s)� (1� pi+1) gi+2(s)℄= [1 + pi(s� 1)℄ gi+1(s)� pi (1� pi+1) (s� 1)gi+2(s);whih is just the �rst line of the lemma. By expanding the generating funtionsand omparing the orresponding oeÆients on the two sides one arrives at theseond and third lines. The last relation follows from the monotone onvergenetheorem.As a orollary, it immediately follows thata1;i = 1Xj=i pjpj+1;whih is otherwise due to the fat that a1;i = ENi. By ontinuing the iteration wean derive expliit formulas for an;i; but they beome more and more ompliatedas n grows. Compliated formulas beome simpler in the partiular ase (1.2). Forthe sake of brevity let us write�i;j = pipi+1 � � � pi+j ; i � 1; j � 0; i = 1 + �i ; i � 1:These quantities then satisfy the reursion�i;r = �r (�i;r�1 � �i+1;r�1) (2.3)for arbitrary integers r � 1, i � 1.Theorem 2.1. an;i � an;i+1 = �i;n12 � � � n�1; (2.4)an;i = �n�i;n�11 � � � n�1 = �nn! n�1Yr=0 �+ r�+ i+ r � 1 : (2.5)Proof. First of all, notie that (2.5) follows from (2.4) by summation, sinean;i � an;i+1 = �n (�i;n�1 � �i+1;n�1) 12 � � � n�1



4 TAM�AS F. M�ORIby (2.3).Now the proof an be arried by indution over n. For n = 1 the third line ofLemma 2.1 reads as a1;i � a1;i+1 = pipi+1 = �i;1. In order to prove (2.4) for n+ 1with a general n let us use Lemma 2.1 again, then apply the indution hypothesisto an;i+1 � an;i+2 and an;i+2. We obtain thatan+1;i � an+1;i+1 = pi�i+1;n12 � � � n�1 + pipi+1 �n �i+2;n�112 � � � n�1= �i;n+112 � � � n�1�1 + �n�= �i;n+112 � � � n;as needed.Thus the generating funtions aregi(s) = 1Xn=0 [�(s� 1)℄nn! n�1Yr=0 �+ r�+ i� 1 + r : (2.6)This funtion is known as the onuent hypergeometri funtion1F1[�; �+ i� 1; �(s� 1)℄;and the orresponding probability distribution is the so-alled beta mixture of Pois-son distribution, see p.330 of [4℄, whih an be obtained in the following way. LetV be a random variable of beta distribution with parameters � and �� �+ i� 1,and let the onditional distribution of �, supposed V is given, be Poisson withparameter �V ; that is,P (� = kjV ) = (�V )kk! e��V ; k = 0; 1; : : : :Then the probability generating funtion of � is just gi.By expanding (2.6) into power series we obtain the probability P (Ni = k) as theoeÆient of sk.Corollary 2.1.P (Ni = k) = 1Xn=k �nn! n�1Yr=0 �+ r�+ i� 1 + r (�1)n�k�nk�= �kk! 1Xj=0 (��)jj! j+k�1Yr=0 �+ r�+ i� 1 + r : (2.7)Transparently, N1 possesses the Poisson(�) distribution when � = �.



SUMS OF OVERLAPPING PRODUCTS 53. Sums of multiple produtsLet d � 1, andN (d)i = 1Xr=i XrXr+1 � � �Xr+d; g(d)i (s) = E �sN(d)i � : (3.1)Similarly to the ase d = 1 it is easy to see that the onvergene of the series�1;d + �2;d + � � � is suÆient for the generating funtions g(d)i (s) to be �nite forarbitrary positive s. Again, letg(d)i (s) = 1Xn=0 a(d)n;i(s� 1)n:Then the following analogue to Lemma 2.1 an be proved.Lemma 3.1.g(d)i (s) = g(d)i+1(s) + (s� 1) d�1Xj=0 �i;j hg(d)i+j+1(s)� g(d)i+j+2(s)i+ (s� 1)�i;d g(d)i+d+1(s);a(d)0;i = 1;a(d)n;i � a(d)n;i+1 = d�1Xj=0 �i;j ha(d)n�1;i+j+1 � a(d)n�1;i+j+2i+ �i;da(d)n�1;i+d+1; n � 1;a(d)n;i ! 0 as i!1; n � 1:Proof. The reursion for the generating funtions an be proved in the same wayas it was done in Setion 2 in the ase of d = 1. Then the other reursion for theoeÆients will immediately follow. By the theorem of total expetation we haveg(d)i (s) = (1� pi) g(d)i+1(s) + d�1Xj=1 �i;j�1 (1� pi+j) g(d)i+j+1(s)++ 1Xj=d �i;j�1 (1� pi+j) sj+1�dg(d)i+j+1(s)= (1� pi) g(d)i+1(s) + d�1Xj=1 �i;j�1 (1� pi+j) g(d)i+j+1(s)++ shpig(d)i+1(s)� d�1Xj=1 �i;j�1 (1� pi+j) g(d)i+j+1(s)i= g(d)i+1(s) + (s� 1)pig(d)i+1(s)� (s� 1) d�1Xj=1 �i;j�1 (1� pi+j) g(d)i+j+1(s)= g(d)i+1(s) + (s� 1) d�1Xj=0 �i;j hg(d)i+j+1(s)� g(d)i+j+2(s)i+ (s� 1)�i;d g(d)i+d+1(s):



6 TAM�AS F. M�ORIIn the rest of the paper we are going to study the ase d = 2 in detail. Then theoeÆients satisfya(2)n;i � a(2)n;i+1 = pi ha(2)n�1;i+1 � a(2)n�1;i+2i++ pipi+1 ha(2)n�1;i+2 � a(2)n�1;i+3i+ pipi+1pi+2a(2)n�1;i+3: (3.2)Let us hoose the probabilities aording to (1.2). From (3.1) we �rst geta(2)1;i � a(2)1;i+1 = �i;2; a(2)1;i = �2�i;1;and then by plugging bak into (3.2) we obtaina(2)2;i � a(2)2;i+1 = �i;3 + �i;4 + �2�i;4 = �i;3 + 2�i;4;a(2)2;i = �3�i;2 + �4 2�i;3;a(2)3;i � a(2)3;i+1 = [�i;4 + 2�i;5℄ + [�i;5 + 2�i;6℄ + ��3�i;5 + �4 2�i;6�= �i;4 + (2 + 3)�i;5 + 24�i;6;a(2)3;i = �4�i;3 + �5 (2 + 3)�i;4 + �6 24�i;5;and so on, one after another. For the general formula introdue A(d)0;r = 1, andA(d)j;r = Xd�t1; t1+d�t2; ��� ; tj�1+d�tj; tj+d�r t1t2 � � � tjfor j � 1; r � (j + 1)d. Obviously, A(d)j;r is a polynomial of �, with degree notgreater than j.Theorem 3.1.a(2)n;i � a(2)n;i+1 = nXj=1 �i;n+jA(2)j�1;n+j ; a(2)n;i = nXj=1 �i;n+j�1 �n+ j A(2)j�1;n+j : (3.3)Proof. This an be proved again by indution. Consider the reursion (3.2) andapply the indution hypothesis to the right-hand side.a(2)n+1;i � a(2)n+1;i+1 = pi nXj=1 �i+1;n+jA(2)j�1;n+j + pipi+1 nXj=1 �i+2;n+jA(2)j�1;n+j++ pipi+1pi+2 nXj=1 �i+3;n+j�1 �n+ j A(2)j�1;n+j= nXj=1 [�i;n+j+1 + �i;n+j+2n+j ℄A(2)j�1;n+j= �i;n+2A(2)0;n+1 + �i;2n+22nA(2)n�1;2n++ nXj=2 �i;n+j+1 hA(2)j�1;n+j + n+j�1A(2)j�2;n+j�1i :



SUMS OF OVERLAPPING PRODUCTS 7It is easy to see that A(2)0;n+1 = A(2)0;n+2, 2nA(2)n�1;2n = A(2)n;2n+2; furthermoreA(2)j�1;n+j + n+j�1A(2)j�2;n+j�1 = A(2)j�1;n+j+1; 2 � j � n:Now, the �rst formula of (3.3) immediately follows, while the seond one is obtainedfrom the �rst one by summation.As a orollary we an write down the generating funtions.g(2)i (s) = 1 + 1Xn=1(s� 1)n nXj=1 �i;n+j�1 �n+ j A(2)j�1;n+j= 1 + 1Xr=1 �i;r �r + 1 X0�j<r=2A(2)j;r+1(s� 1)r�j : (3.4)Here (3.4) better reets how the generating funtion depends on �: g(2)i (s) dependson i and � through i+ �, and i+ � is only ontained in the fators �i;r.Finally, the distribution of N (2)i an be obtained from (3.4) by expanding it intopower series.Corollary 3.1. For k = 0; 1; 2; : : :P �N (2)i = k� = 1Xn=k(�1)n�k�nk� nXj=1 �i;n+j�1 �n+ j A(2)j�1;n+j :AknowledgementThe author is indebted to S�andor Cs�org}o for alling his attention to the topi.Referenes1. Arratia, R., Barbour, A. D. and Tavar�e, S., Poisson proess approximations forthe Ewens sampling formula, Ann. Appl. Probab. 2 (1992), 519{535.2. Cs�org}o, S. and Wu, W. B., On sums of overlapping produts of independentBernoulli random variables, Ukra��n'ski�� Matematiheski�� Zhurnal 52 (2000),1304{1309.3. Ewens, W. J., Mathematial Population Genetis, Springer, Berlin, 1979.4. Johnson, N. L., Kotz, S. and Kemp, A. W., Univariate Disrete Distributions,2nd Ed., Wiley, New York, 1992.Department of Probability Theory and Statistis,E�otv�os Lor�and University,Keskem�eti u. 10-12, Budapest, Hungary H-1053E-mail address: moritamas�ludens.elte.hu


