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ON THE MULTIPLICITY OF THE SAMPLEMAXIMUM AND THE LONGEST HEAD RUNTam�as F. M�oriE�otv�os Lor�and University, BudapestDedi
ated to Endre Cs�aki on the o

asion of his 65th birthdayAbstra
t. Tossing a (not ne
essarily unbiased) 
oin n times let us denote the lengthof the longest head run by Zn and the number of head runs of su
h length by Mn.On
e Erd}os asked about the asymptoti
 behavior of Mn as n ! 1, and thesequestions motivated the problems that will be dis
ussed in the present paper.In an array of a double sequen
e of integer valued random variables, i.i.d. withinrows, let �(n) denote the multipli
ity of the maximal value in the nth row. In Se
tion2 the asymptoti
 distribution of �(n) is 
omputed. Though limit distribution doesnot exist in the ordinary sense, a.s. limit distribution does, as proved in Se
tion 3.In Se
tion 4 the multipli
ity Mn of the maximal run is investigated in a generalmodel of waiting times. By applying the results of Se
tions 2 and 3 an asymptoti
formula is derived for the distribution of Mn, together with an a.s. limit distributiontheorem.Two interesting examples are dis
ussed in Se
tion 5. One of them is the motivatingproblem of longest head run, with a generalization of allowing at most d tails inbetween. The other one 
on
erns the longest 
at segment (or tube, in other words)of a (dis
rete) random walk.The last se
tion 
ontains multivariate extensions.1. Introdu
tionLet X1; X2; : : : be an in�nite sequen
e of i.i.d. Bernoulli random variables, withP (Xi = 1) = p, P (Xi = 0) = 1 � p = q, 0 < p < 1. We 
an think of the X 'sas su

essive tosses by a (not ne
essarily unbiased) 
oin, interpreting 1's as headsand 0's as tails. Let us denote the length of the longest head run up to n, and themultipli
ity of the longest head run by Zn, and Mn, resp. That is,Zn = max fm� k : 0 � k � m � n;Xk+1 = � � � = Xm = 1g ;Mn = n�ZnXi=0 I (Xi+1 = � � � = Xi+Zn = 1) :The problem of 
hara
terizing the limit properties of Mn was posed in [6℄, Prob-lem 2 on p. 62, see also Problem 11 of [3℄. In the present paper we are going toResear
h supported by the Hungarian National Foundation for S
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 Resear
h, Grant No.T-29621 Typeset by AMS-TEX1
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a Math. Hung. 41 (2000), 195{212.show that Mn does not have a limit distribution in the ordinary sense, but it stillhas an a.s. limit distribution. Some results will also be presented on the a.s. limsupbehaviour of the sequen
e Mn.Sin
e the lengths of disjoint head runs are independent geometri
ally distributedrandom variables with parameter q, it is quite natural to begin with the multipli
ityof the maximum of a random sample from geometri
 distribution. Results of thattype are found in [1℄, where the asymptoti
 form of the probability that the samplemaximum is unique (multipli
ity equals 1) is studied. Here we need a bit more:on the one hand we want to estimate the whole distribution of the maximum,and on the other hand, we also have to deal with joint distribution of maxima
orresponding to di�erent sample sizes. Results on the maximum of a sample fromgeometri
 distribution 
an easily be generalized to other dis
rete distributions withstabilizing hazard, and in the paper this general setting will be 
onsidered wheneverit does not 
ause too mu
h 
ompli
ation.2. Multipli
ity of sample maxima: asymptoti
 distributionIn this se
tion we 
onsider a general s
heme 
omprising an array (double se-quen
e) of random variables, i.i.d. within rows. That is, for every positive integern let Y1;n; Y2;n; : : : ; YN;n be a random sample of size N = Nn from a nonnegativeinteger valued probability distribution P (Yi;n = k) = pk;n; k = 0; 1; : : : , and letqk;n = P (Yi;n � k) = pk;n + pk+1;n + � � � . Suppose N tends to in�nity in
reasinglywith n. Consider the sequen
e of sample maximaWn = max fY1;n; : : : ; YN;ng ;and let �(n) denote the multipli
ity of Wn, that is, the number of sample elementsYi;n; i � N , being equal to Wn.Lemma 2.1.P (�(n) = m) = 1m! 1Xk=0 (Nnpk;n)m exp (�Nnqk;n) + o(1); (2.1)as n!1.Proof. For 1 � m � N 
learlyP (�(n) = m) = 1Xk=0P (�(n) = m;Wn = k)= 1Xk=0�Nm�pmk;n (1� qk;n)N�m : (2.2)Let 12 < 
 < 1, and k(n) = max fk : qk;n � N�
g. Then all terms on the right handsides of (2.1) and (2.2) with k � k(n) are asymptoti
ally negligible, sin
eXk�k(n) (Npk;n)m exp (�Nqk;n) � Nm exp ��N1�
� Xk�k(n) pmk;n � Nm exp ��N1�
� ;
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a Math. Hung. 41 (2000), 195{212.and similarly,Xk�k(n)�Nm�pmk;n (1� qk;n)N�m � Nmm! exp ��(N �m)N�
� Xk�k(n) pmk;n = o(1):On the other hand, 
orresponding terms of the two series above are asymptoti
allyequal as n!1, besides, that holds uniformly for k > k(n).�Nm�pmk;n (1� qk;n)N�m � �1� qk(n)+1;n��m 1m! (Npk;n)m exp (�Nqk;n)� �1�N�
��m 1m! (Npk;n)m exp (�Nqk;n) ;= �1 + o(1)� 1m! (Npk;n)m exp (�Nqk;n) ;and�Nm�pmk;n (1� qk;n)N�m � �1� mN �m ��1� qk(n)+1;n� exp �qk(n)+1;n��N �� 1m! (Npk;n)m exp (�Nqk;n)� �1� mN �m �1� 1N2
�N 1m! (Npk;n)m exp (�Nqk;n)= �1� o(1)� 1m! (Npk;n)m exp (�Nqk;n) :In the last inequality we used the fa
t that (1� x)ex � 1� x2.Remark 2.1. From the proof it is 
lear that the order of magnitude of the remaindersin (2.1) is O �N�1n �, and this 
annot be improved for m > 1.Let us introdu
e the (dis
rete) hazard fun
tionrk;n = pk;n=qk;n = P (Yi;n = k j Yi;n � k) :Clearly, qk;n = k�1Yi=0 (1� ri;n) ; pk;n = rk;n k�1Yi=0 (1� ri;n) :When all variables Yi;n are identi
ally distributed, we 
an suppress n in the sub-s
ripts of pk;n, qk;n, and rk;n. In the 
ase of geometri
 distribution de�ned bypk = qpk�1, k � 1, where 0 < q < 1 is a parameter and p+q = 1, we have qk = pk�1and the hazard is 
onstant: rk = q. We say that a distribution fpk; k � 0g is ofstabilizing hazard, if rk ! r as k ! 1, where 0 < r < 1. Equivalently, we 
analso write pk+1=pk ! r. Well-known distributions of this type are, for instan
e, thenegative binomial distributions of arbitrary order, and the logarithmi
 distribution.For the sequel we need to de�ne a similar property for arrays. Requiring thatall of the row distributions are of stabilizing hazard, uniformly in n, and with thesame limit r, is 
ertainly suÆ
ient, but a somewhat weaker 
ondition will also do,if we add that the sequen
e of row distributions should in
rease sto
hasti
ally.
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reasing fun
tion of n for every k =1; 2; : : : . Let �(n) = minfk : Nnqk;n � 1g, then �(n) ! 1 in
reasingly. We saythat the array fYi;n : 1 � i � Nn; n � 1g possesses the property of stabilizing hazard(SH, brie
y), if limn!1 r�(n)+k;n = r 2 (0; 1)for arbitrary integer k.This property enables us to derive a simple asymptoti
 formula for the distribu-tion of �(n). It will turn out that limit distribution does not exist in the ordinarysense, but in Se
tion 3 we will show that �(n) does possess a.s. limit distribution,namely a logarithmi
 one.Let us de�ne the fun
tions fm; m = 1; 2; : : : by the doubly in�nite seriesfm(x; y) = (1� y)mm! +1Xk=�1 �ykx�m exp ��ykx� ; 0 < x; 0 < y < 1: (2.3)It is easy to see that fm(xy; y) = fm(x; y). Hen
e the series (2.3) is uniformly
onvergent in the stripe 0 < x; a � y � b (0 < a < b < 1), be
ausemaxa�y�b; y�x�1 �ykx�m exp ��ykx� � � bkm exp ��ak+1� ; if k � 0;akm exp ��bk+1� ; if k < 0;whi
h makes a 
onvergent series. Thus fm(x; y) is 
ontinuous.Now we show that P1m=1 fm(x; y) = 1. By 
hanging the order of summation wehave 1Xm=1 fm(x; y) = 1Xm=1 (1� y)mm! +1Xk=�1 �ykx�m exp ��ykx�= +1Xk=�1 1Xm=1 1m! �(1� y)ykx�m exp ��ykx�= +1Xk=�1 exp ��ykx� �exp �(1� y)ykx�� 1�= +1Xk=�1 �exp ��yk+1x�� exp ��ykx��= limk!+1 exp ��ykx�� limk!�1 exp ��ykx�= 1:Lemma 2.2. Suppose SH holds. Let 
(n) = Nnq�(n);n, thenP (�(n) = m) = fm (
(n); 1� r) + o(1); (2.4)as n!1.Proof. Let M be a �xed positive integer. From (2.1) it follows for all suÆ
ientlylarge n thatP (�(n) = m) � 1m! MXk=�M �Nnp�(n)+k;n�m exp ��Nnq�(n)+k;n�+ o(1):
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e Nnp�(n)+k;n � r(1� r)k
(n) and Nnq�(n)+k;n � (1� r)k
(n)! 0 as n!1,we obtain thatlim infn!1 �P (�(n) = m)� 1m! MXk=�M �r(1� r)k
(n)�m exp ��(1� r)k
(n)�� � 0for every M > 0, hen
elim infn!1 hP (�(n) = m)� fm (
(n); 1� r)i � 0; m = 1; 2; : : : :On the other hand, lim supn!1 hP (�(n) = m)� fm (
(n); 1� r)i= lim supn!1 X1�j 6=mhfj (
(n); 1� r)� P (�(n) = j)i� X1�j 6=m lim supn!1 hfj (
(n); 1� r)� P (�(n) = j)i= � X1�j 6=m lim infn!1 hP (�(n) = j)� fj (
(n); 1� r)i � 0;
ompleting the proof.Lemma 2.3. Suppose SH holds, and, in addition,limn!1 NnNn+1 = 1; and limn!1 q�(n);nq�(n);n+1 = 1 (2.5)(this is the 
ase, for instan
e, if the n-th row of the array is built up from the �rstn terms of the same i.i.d. sequen
e). Then the set of limit points of the sequen
ef
(n); n � 1g 
oin
ides with the 
losed interval [1� r; 1℄.Proof. Let �(k) = max fn : Nnqk;n � 1g, that is,N�(k)qk;�(k) � 1 < N�(k)+1qk;�(k)+1:Then �(k) is in
reasing; and for n satisfying �(k�1) < n � �(k) we have �(n) = k,be
ause Nnqk;n � N�(k)qk;�(k) � 1 < N�(k�1)+1qk�1;�(k�1)+1 � Nnqk�1;n:Consequently, 
(n) � 
(n+ 1) for �(k � 1) < n < �(k).Now we show that 
(n) 
rawls a
ross the interval [1 � r; 1℄, as n runs from�(k� 1)+ 1 to �(k). First, let n = �(k� 1)+ 1. Then �(n)� 1 = k� 1 = �(n� 1),hen
e 
(n) = Nnqk;n = Nnq�(n)�1;n �1� r�(n)�1;n� > 1� r�(n)�1;n � 1� r;
(n) = �1� r�(n)�1;n� NnNn�1 q�(n)�1;nq�(n)�1;n�1 
(n� 1)� �1� r�(n)�1;n� NnNn�1 q�(n�1);nq�(n�1);n�1 � 1� r;
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ondly, let �(k � 1) < n < �(k). Then, by (2.5),
(n)
(n+ 1) = Nnqk;nNn+1qk;n+1 = NnNn+1 � q�(n);nq�(n);n+1 ! 1as k !1.Thirdly, let n = �(k). Then
(n) = NnNn+1 q�(n);nq�(n);n+1 Nn+1q�(n+1)�1;n+1 > NnNn+1 q�(n);nq�(n);n+1 ! 1;as k !1; and at the same time 
(n) � 1 by de�nition.From all these one 
an readily 
on
lude that 
(n) os
illates between 1� r and 1.As a 
orollary we obtain that �(n) does not 
onverge in distribution.3. Multipli
ity of sample maxima: a.s. limit distributionFrom Lemma 2.2 and Lemma 2.3 it is 
lear that in the 
ase of stabilizing hazard�(n) is sto
hasti
ally bounded, but very often it does not have a limit distributionas n ! 1, be
ause of the logarithmi
 periodi
ity appearing in the asymptoti
distribution.Su
h a periodi
ity 
an be eliminated by a suÆ
iently strong (e.g. logarithmi
)summation pro
edure, and even the existen
e of an a.s. limit distribution 
an oftenbe proved.A sequen
e of random variables �n is said to have a.s. limit distribution, if forevery real x limt!1 1log t tXn=1 1n I(�n � x) = G(x) a.s. (3.1)with some non-degenerate distribution fun
tion G(x). Under quite general 
ondi-tions, (3.1) holds if and only if the sequen
e of probabilities P (�n � x) is logarith-mi
ally summable to G(x), as it is implied by the following simple lemma.Lemma 3.1. [4℄ Let �1; �2; : : : be a sequen
e of uniformly bounded random vari-ables (e.g. �n = I(�n � x) � P (�n � x) ), su
h that jE (�i�j)j � h(j=i), 1 � i < j,where h is a positive de
reasing fun
tion, andZ 11 h(x)x log x dx �1:Then limt!1 1log t tXn=1 1n �n = 0 a.s.Arrays are not really suitable for investigations of a.s. type, be
ause the jointdistributions of the rows are indetermined. Therefore, in this se
tion we will 
on�neourselves to a single series of i.i.d. random variables Y1; Y2; : : : ; thus �(n) is themultipli
ity of the maximal value among the �rst n variables. In other words, here
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onsider a spe
ial array with Nn = n and Yi;n = Yi. A

ording to this, the rowindex n in the subs
ripts of pk;n, qk;n, and rk;n will be suppressed. We will requirethat the distribution of Yi is of stabilizing hazard. Consequently, our spe
ial arraysatis�es the SH property.In order to apply Lemma 3.1 we �rst have to estimate P (�(n) = m; �(s) = m),n < s. Let �(n; s) = # fi : n < i � s; Yi = maxfYn+1; : : : ; Ysgg.Lemma 3.2. Suppose rk ! r 2 (0; 1). For arbitrary Borel sets A, B, and positiveintegers n < s we have��P (�(n) 2 A; �(s) 2 B)� P (�(n) 2 A)P (�(s) 2 B)�� � C ns ;where the 
onstant C only depends on the distribution of Yi.Proof. Clearly,��P (�(n) 2 A; �(s) 2 B)� P (�(n) 2 A)P (�(s) 2 B)�� �� ��P (�(n) 2 A; �(s) 2 B)� P (�(n) 2 A; �(n; s) 2 B)��++ ��P (�(n) 2 A)P (�(n; s) 2 B)� P (�(n) 2 A)P (�(s) 2 B)��� 2P (�(n; s) 6= �(s)) :If �(n; s) 6= �(s), there must be a sample element of maximum value among the�rst n ones. By symmetry, the maximal elements are distributed uniformly amongthe sample, thus we 
an writeP (�(n; s) 6= �(s)) � P (9i � n : Yi =Ws) � nP (Y1 =Ws) == n 1Xk=0 pk (1� qk+1)s�1 = ns 1Xk=0 spk+1 (1� qk+1)s�1 rkrk+1(1� rk) : (3.2)The sum in (3.2) is very similar to that we obtained for P (�(s) = 1) in (2.2), theonly di�eren
e is that ea
h term is multiplied by a fa
tor. In the 
ase of stabilizinghazard those fa
tors 
onverge to (1� r)�1, thus they are bounded. Hen
eP (�(n; s) 6= �(s)) � C ns : (3.3)Remark 3.1. In the 
ase of stabilizing hazard it sounds plausible that E�(s) remainsbounded as s!1, but let us noti
e that from the proof above it follows thatlim sups!1 E�(s) � (1� r)�1:Indeed, sin
e �(s) 
an be de
omposed into a sum of inter
hangeable indi
ators, wehave E�(s) = sP (Y1 =Ws), that is, E�(s) is just equal to the series in (3.2). Inthe proof of Lemma 2.1 we have pointed out that the beginning of the series (2.2)be
omes negligible as s!1, hen
e it follows that the lim sup of the sum in (3.2)does not ex
eed (1� r)�1.Now we are in a position to prove the main result of this se
tion.
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a Math. Hung. 41 (2000), 195{212.Theorem 3.1. With probability 1limt!1 1log t tXn=1 1n I (�(n) = m) = rmm log� 11�r� ; m = 1; 2; : : : :Proof. We 
an apply Lemma 3.1 with h(x) = Cx�1. By Lemma 2.2 we have1log t tXn=1 1n P (�(n) = m) = 1log t tXn=1 1n fm(nq�(n); 1� r) + o(1):A

ording to the notation used in the proof of Lemma 2.3, let �(k) denote theinteger part of 1=qk. Then �(k)=�(k + 1) ! 1 � r, hen
e log �(k) � k log 11�r , ask !1; and for k = 1; 2; : : :S(k) =: �(k)Xn=�(k�1)+1 1n fm(nq�(n); 1� r) = �(k)Xn=�(k�1)+1 1n fm(nqk; 1� r):Thus S(k) appears to be an integral approximating sum. Remembering the prop-erties of the fun
tion fm(x; y) we getS(k) = �(k)qkZ�(k�1)qk 1x fm(x; 1� r)dx + o(1)= 1Z1�r 1x fm(x; 1� r)dx + o(1) := �+ o(1)as k !1. Sin
e for �(j � 1) � t < �(j) we 
an write1log �(j) j�1Xk=1S(k) � 1log t tXn=1 1n fm(nq�(n); 1� r) � 1log �(j � 1) jXk=1S(k);it follows that limt!1 1log t tXn=1 1n P (�(n) = m) = �log 11�r :Let us 
ompute �.� = 1Z1�r rmm! +1Xk=�1(1� r)kmxm�1 exp ��(1� r)kx� dx= rmm +1Xk=�1 1Z1�r 1(m� 1)! (1� r)kmxm�1 exp ��(1� r)kx� dx
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a Math. Hung. 41 (2000), 195{212.= rmm +1Xk=�1 (1�r)kZ(1�r)k+1 1(m� 1)! ym�1e�ydy= rmm 1Z0 1(m� 1)! ym�1e�ydy= rmm :By virtue of Lemma 3.1 the proof is 
ompleted.4. Multipli
ity of maximal runsIt is quite easy to see that the (random) number of head runs up to n is asymp-toti
ally npq, thus the multipli
ity of the longest head run is approximately thesame as that of the maximum of a sample of size npq, drawn from geometri
 distri-bution with parameter q. Similar, but somehow re�ned, approa
h 
an be appliedin the following more general setting.Let (X ;F) be a measurable spa
e and X1; X2; : : : i.i.d. X -valued random vari-ables with distribution Q. Let Xn;k denote the blo
k (Xn; Xn+1; : : : ; Xn+k�1).Suppose for every positive integer k we are given a measurable set Bk � Fk su
hthat Bk � Bk�1 �X ; Bk � X �Bk�1:Let Ai;j abbreviate the event fXi;j 2 Bjg; if Ai;j o

urs, we say that a run of lengthj begins at i. De�ne Tk = min fn � k : An�k+1;k o

ursg ;then T1 < T2 < � � � . Let p(k) = P (A1;k) = P (Tk = k); this is de
reasing in k.Assume that p(k) > 0 for every k; then Tk is �nite and it has �nite moments ofarbitrary order. Parti
ularly, denote ETk shortly by E(k).In [5℄ it is shown that�1� 1E(k)�n [1� kp(k)℄� 2kE(k)p(k)2 � P (Tk � n+ k) � �1� 1E(k)�n (4.1)(see Lemma 2.2 there). These inequalities will prove to be very useful in the sequel.Finally, let us introdu
e Zn = max fk : Tk � ng (this 
orresponds to the length ofthe longest head run), and its multipli
ityMn = # fi � n� Zn + 1 : Xi;Zn 2 BZng.More generally, for n < s letZn;s = max fk � s� n : Xi;k 2 Bk for some n < i � s� k + 1g ;and let Mn;s be its multipli
ity.In [5℄ it was proved under quite general 
onditions that Zn has an a.s. limitdistribution, though its asymptoti
 distribution shows logarithmi
 periodi
ity. Here
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onditions. limk!1 p(k + 1)=p(k) = p 2 (0; 1); (4.2)limk!1P (A1;k+1 j A1;k \ Aj+1;k�j+1) = 1; j = 1; 2; : : : : (4.3)In [5℄ (
ase (ii) of Theorem 3.1) a 
ondition, very similar to (4.2), was introdu
ed,namely, the existen
e of a positive, in
reasing, di�erentiable fun
tion f su
h thatE(k) � f(k), the limit 
 := limt!1 (log f(t))0 exists, and it is positive and �nite.Essentially, this means that E(k)=E(k+1)! e�
. As we 
an see from Lemma 4.1below, this latter is implied by our 
onditions (4.2) and (4.3), too. The meaningof 
ondition (4.3) is that the o

urren
es of the maximal run are all disjoint withprobability tending to 1 as n!1, see the proof of Lemma 4.2.In appli
ations it is often mu
h easier to 
ompute p(k) than E(k) itself. Thoughit is not so hard to see that 1 � p(k)E(k) � k (see Lemma 2.1 of [5℄), (4.2) and(4.3) provide more pre
ise relation between p(k) and E(k).Lemma 4.1. limk!1 p(k)E(k) = 11� p;and hen
e E(k)=E(k + 1)! p.Proof. Let us introdu
e Æ = Æ(`; j) asÆ = sup�P �A1;k+1 j A1;k \At+1;k�t+1� : 1 � t � j; ` � k	 :Clearly, limk!1 Æ(k; j) = 0 by (4.3) for every j = 1; 2; : : : ; in addition, we 
anwrite p(k + 1) � P (A1;k \ At+1;k�t+1) � p(k + 1)1� Æ(k; j) ; 1 � t � j: (4.4)Let us apply the following 
orollary of Lemma 2.1 of [5℄:limk!1 p(k)E(k) = limj!1 limk!1 p(k)P (Tk = k + j) : (4.5)Here we haveP (Tk = k + j) = P �A1;k \ � � � \Aj;k \ Aj+1;k�� P (Aj+1;k)� P (Aj+1;k \ Aj;k+1) � p(k)� p(k + 1):On the other hand,P (Tk = k + j) � P (Aj+1;k)� P�j�1St=1 �Aj+1;k \At;k \At+1;k� S (Aj+1;k \Aj;k)�� P (A1;k)� j�1Xt=1 P �Aj�t+2;k�j+t \ A1;k \ A1;k+1�� P (A1;k \ A2;k)� p(k + 1)� (j � 1) Æ1� Æ p(k + 1)� 11� Æ p(k + 1)= p(k)� p(k + 1)� jÆ1� Æ p(k + 1):
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ompute the asymptoti
 distribution of Mn let us de�ne an array towhi
h the results of Se
tion 2 
an be applied. Let Nn be an in
reasing sequen
e ofpositive integers, su
h that n=Nn is in
reasing, andlimn!1Nn = +1; limn!1Nn=Nn+1 = 1; Nn = o (n= logn) : (4.6)Let Rn denote the integer part of n=Nn; and let us divide the sequen
e X1; : : : ; Xninto Nn blo
ks of size Rn, plus a last one of length < Nn, if Nn does not dividen. De�ne Yi;n as the length of the maximal run observed in the ith blo
k, that is,Yi;n = Z(i�1)Rn;iRn , i = 1; 2; : : : ; Nn. For n �xed, these are i.i.d. random variables.Lemma 4.2. With the notation of Se
tion 2 we havelimn!1P (Wn = Zn; �(n) =Mn) = 1:Proof. Let us see how it 
an happen that Wn 6= Zn or �(n) 6= Mn. In that 
aseat least one o

urren
e of the maximal run is not 
ounted, be
ause either (a) it
rosses the boundary between two adja
ent blo
ks, (b) it rea
hes the last, not
ounted blo
k, (
) there is a blo
k with at least two disjoint o

urren
es of themaximal run, or (d) there are two overlapping o

urren
es somewhere.Suppose the length of the maximal run is m. Then the probability of 
ase (a)is estimated by (Nn � 1) (m � 1)p(m); that of 
ase (b) by (Nn � 1)p(m); and theprobability of 
ase (
) is less than NnR2np(m)2. Finally, in 
ase (d) the probabilityof two overlapping o

urren
es is estimated bym�1Xt=1 nP �A1;m \At+1;m \ A1;m+1�� n jXt=1 p(m+ 1)Æ(m; j)1� Æ(m; j) + nXt>j p(t)p(m)= np(m+ 1) jÆ(m; j)1� Æ(m; j) + np(m)Xt>j p(t);for arbitrary j. Here we applied (4.4) to terms with t � j.Let " > 0 be �xed, and 
hoose j in su
h a way that Pt>j p(t) < ". Further, letK = Kn be the largest integer su
h thatexp (�n=E(K)) � ":Then K < C logn, and np(K) � C log 1" by Lemma 4.1. (Here and in what followsthe same letter C will denote di�erent 
onstants, all independent of ".) In addition,by (4.1) we haveP (Zn < K) = P (TK > n) � exp��n�KE(K) � � C":



Periodi
a Math. Hung. 41 (2000), 195{212.Thus we 
an write1�P (Wn = Zn; �(n) =Mn) � P (Zn < K)++ Xm�K 24Nmp(m) + [np(m)℄2N + np(m) jÆ(K; j)1� Æ(K; j) + np(m)Xt>j p(t)35� C �"+NKp(K) + [np(K)℄2N + np(K)jÆ(K; j) + np(K)"�� C ""+ N lognn log 1" + 1N �log 1"�2 + jÆ(K; j) log 1" + " log 1"# :Hen
e lim infn!1 P (Wn = Zn; �(n) =Mn) � 1� C" log 1" ;where " 
an be arbitrarily small positive number.Lemma 4.3. The array fYi;ng satis�es property SH with r = 1� p.Proof. Sin
e Rn is in
reasing, so is Y1;n, hen
eqk;n = P (Y1;n � k) � P (Y1;n+1 � k) = qk;n+1:From (4.1) it is 
lear that P (Tk � n) � n=E(k), if k and n tend to in�nity in su
ha way that n=E(k)! 0 and k = o(n). Thereforeqk;n = P (Y1;n � k) = P (Tk � Rn) � nNnE(k) (4.7)if the right-hand side 
onverges to 0, and kNn = o(n). From De�niton 2.1 one 
animmediately see that �(n) = O(logn), hen
e q�(n);n � nNnE(�(n)) by (4.6) and(4.7), and also q�(n)+k;n � nNnE(�(n) + k) . Consequently, 
(n) � nE(�(n)) , and1� r�(n)+k;n = q�(n)+k+1;nq�(n)+k;n � E(�(n) + k)E(�(n) + k + 1) � p;by (4.2) and Lemma 4.1.By 
ombining Lemmas 4.2, 4.3, 2.2 and 2.3 we 
an approximate the distributionof Mn.Theorem 4.1. Let �(n) = minfk : E(k) � ng. ThenP (Mn = m) = fm� nE(�(n)) ; p�+ o(1):The set of limit points of n=E(�(n)) is the whole interval [p; 1℄, thus P (Mn = m)does not 
onverge.Proof. Let d = �(n) � �(n); 
learly, jdj � 1 for all suÆ
iently large n. By (4.2),n=E(�(n) + d) � 
(n)pd, but this 
hange does not make any di�eren
e by theperiodi
ity and 
ontinuity of fm.The se
ond part of the Theorem will follow from Lemma 2.3 if we show thatq�(n);n � q�(n);n+1, but this latter is implied by (4.7).Let us pass over to the a.s. limit distribution. It does not appear easy to applyTheorem 3.1 dire
tly; we are going to use Lemma 3.1 instead. Thus, we have toestimate P (Mn = m; Ms = m), n < s. De�ne `(x) = maxflogx; 1g, x > 0.



Periodi
a Math. Hung. 41 (2000), 195{212.Lemma 4.4. For arbitrary Borel sets A, B, and positive integers n < s we have��P (Mn 2 A; Ms 2 B)� P (Mn 2 A)P (Ms 2 B)�� � C ns `� sn� :Proof. Exa
tly in the same way as in the proof of Lemma 3.2 we obtain that��P (Mn 2 A; Ms 2 B)� P (Mn 2 A)P (Ms 2 B)�� � 2P (Mn;s 6=Ms) :If Mn;s 6= Ms, there must be a maximal run beginning in 
ourse of the �rst nexperiments. Suppose Zs = k, then Tk < n+ k but Tk+1 > s. Thus we 
an writeP (Mn;s 6=Ms) � P� Tk�1fTk < n+ k; Tk+1 > sg�� P (Tk0 < n+ k0) + P (Tk0 > s) ; (4.8)for arbitrary positive integer k0. Let k0 be the largest integer k su
h that1E(k) � 1s `� sn� ;then k0 = O (log s) by (4.2). Terms on the right-hand side of (4.8) are easy toestimate. On the one hand, by Lemma 4.1 we haveP (Tk0 < n+ k0) � np(k0) = O� nE(k0)� = O �ns `� sn�� :On the other hand, by applying (4.1) we 
an writeP (Tk0 > s) � exp��s� k0E(k0)� = O �ns � :This 
ompletes the proof.As a 
orollary, we immediately obtain the a.s. limit distribution of Mn.Theorem 4.2. With probability 1limt!1 1log t tXn=1 1n I (Mn = m) = (1� p)mm log(1=p) ; m = 1; 2; : : : :A proof of this assertion 
an be given simply by 
opying that of Theorem 3.1,therefore it will be omitted. 5. ExamplesIn this se
tion we spe
ialize our results to obtain interesting 
orollaries in twoimportant parti
ular 
ases. Detailed dis
ussion of these models are presented in[2℄, and also in [5℄, where the a.s. limit distribution of Zn is derived.
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a Math. Hung. 41 (2000), 195{212.5.1. The longest (d-interrupted) head run.Let X1; X2; : : : be the Bernoulli sequen
e of the Introdu
tion. For a �xed non-negative integer d de�neBk = �(x1; : : : ; xk) 2 f0; 1gk : x1 + � � �+ xk � k � d	 :Then Zn is the length of the longest blo
k up to n 
ontainig at most d zeros (tails),and Mn is its multipli
ity. Clearly,p(k) � 1d!�qkp �dpk;thus (4.2) holds. On the other hand, P �A1;k \ Aj+1;k�j+1 \ A1;k+1� = 0, if d = 0(the 
ase of pure head runs), and for d � 1 it is majorized by the probability thatXj+1;k�j 
ontains exa
tly d� 1 zeros, whi
h is approximately1(d� 1)!�qkp �d�1pk�j = o (p(k + 1))as k !1. Thus (4.3) is also satis�ed, and Theorems 4.1 and 4.2 are valid.Parti
ularly, when d = 0, we have n=E(�(n)) � nqp�(n), therefore Theorem 4.1simpli�es to P (Mn = m) = fm (nq; p) + o(1):5.2. The longest tube of a random walk.Let X1; X2; : : : be i.i.d. integer valued random variables with 
ommon distribu-tion P (X1 = i) = pi; i 2 Z; these are the steps of a random walk. Assume that forevery i 2 Z there exists a k0 su
h that P (X1 + � � �+Xk = i) > 0 for k � k0. Fora �xed positive integer d de�neBk = �(x1; : : : ; xk) 2 Zk : ��� jPt=ixt��� < d; 1 � i � j � k� :A run of length k means that there exists an interval of d integers whi
h 
ontainsthe position of the random walk at ea
h of k 
onse
utive steps. In [5℄ the followingapproximation of p(k) is derived. Let Qd be the d � d matrix with entries pi�j ,1 � i � d, 1 � j � d. If d is large enough, say d � d0, then there exists a k su
hthat Qkd is a positive matrix. Let %d denote the maximal 
hara
teristi
 value ofQd, then p(k) � 
d%kd as k !1 with a suitable multiplier 
d (see [5℄ for the exa
tvalue), thus (4.2) is ful�lled. For instan
e, if X1 is symmetri
ally distributed, andjX1j � 1, let p1 = p�1 = p, p0 = q = 1� 2p; then%d = q + p 
os �d+ 1 ; 
d = 2d+ 1 �
ot �2(d+ 1)�2 :If both X1;k and Xj+1;k�j+1 remain within an interval of length d, but X1;k+1does not, then the two intervals 
annot 
oin
ide, thus Xj+1;k�j falls into a shorterinterval. The probability of that is approximately 
d�1% k�jd�1 . Sin
e %d�1 < %d, thisprobability vanishes 
ompared to p(k + 1), as k ! 1. Hen
e (4.3) follows; andTheorems 4.1 and 4.2 
an be applied with p = %d. In addition, by the periodi
ityof fm we 
an write P (Mn = m) = fm (n
d; %d) + o(1):
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a Math. Hung. 41 (2000), 195{212.6. Multivariate extensionsIn this se
tion multivariate extensions of Lemma 2.2 and Theorem 4.1 will bepresented. First, let us 
onsider the 
ase of arrays with i.i.d. random variableswithin rows. Suppose property SH holds. Let us de�ne re
ursivelyZ1(n) =Wn; Zj(n) = max fYi;n : 1 � i � n; Yi;n < Zj�1(n)g ; j > 1:These random variables list the di�erent values of the sample in de
reasing order.Let �j(n) denote the multipli
ity of Zj(n), that is,�j(n) = # fi � Nn : Yi;n = Zj(n)g :Finally, let us introdu
e the gaps �j(n) = Zj�1(n)� Zj(n).The following limit theorem 
an be derived along the same lines as Lemma 2.2was proved.Theorem 6.1. With the notations of Se
tion 2 we haveP (�1(n) = m1; : : : ; �j(n) = mj ; �1(n) = s1; : : : ; �j(n) = sj) == m!m1! � � �mj ! jYi=1(1� r)si(m1+���+mi) �(1� r)�m � 1� fm(
(n); 1� r) + o(1);where m = m1 + � � �+mj and n!1.Corollary 6.1. The joint asymptoti
 distribution of �1(n); : : : ; �j(n) is the follow-ing.P (�1(n) = m1; : : : ; �j(n) = mj) == m!m1! � � �mj ! j�1Yi=1 (1� r)m1+���+mi1� (1� r)m1+���+mi fm(
(n); 1� r) + o(1):Given �1(n); : : : ; �j(n), the gaps �1(n); : : : ; �j(n) are 
onditionally asymptoti
allyindependent and geometri
ally distributed, namely, �i(n) with parameter1� (1� r)�1(n)+���+�i(n):Remark 6.1. From the �rst part of Corollary 5.1 it is 
lear that the asymptoti
 jointdistribution of �1(n); : : : ; �j(n) given their sum �1(n) + � � �+�j(n) does not su�erfrom logarithmi
 periodi
ity; in fa
t, �1(n); : : : ; �j(n) have a limiting 
onditionaldistribution.Remark 6.2. If the samples are drawn from geometri
 distribution of parameter q,then r = p; 1 � r = q and in both of Theorem 5.1 and the �rst part of Corollary5.1 fm(
(n); 1� r) 
an be repla
ed with fm(Nn; q). Besides, the se
ond part ofCorollary 5.1 is valid not only asymptoti
ally, but also for every �nite n, providedNn > �1(n) + � � �+ �j(n).
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a Math. Hung. 41 (2000), 195--212.Finally, let us turn to the waiting times de�ned in Se
tion 4. Suppose (4.2) and(4.3) hold. De�ne An = f(i; k) : 1 � i � n� k; Xi;k 2 Bi;kg, and letZ1(n) = maxfk : (i; k) 2 Ang;Zj(n) = max fk : (i; k) 2 An; k < Zj�1(n)g ; j > 1:Let Mj(n) denote the multipli
ity of Zj(n), that is,Mj(n) = # f(i; k) 2 An : k = Zj(n)g ;and let Sj(n) = Zj�1(n) � Zj(n). Then the following generalization of Theorem4.1 
an be proved as well.Theorem 6.2. Let �(n) = minfk : E(k) � ng. ThenP (M1(n) = m1; : : : ; Mj(n) = mj ; S1(n) = s1; : : : ; Sj(n) = sj) == m!m1! � � �mj ! jYi=1 psi(m1+���+mi) �p�m � 1� fm� nE(�(n)) ; p�+ o(1);where m = m1 + � � �+mj and n!1.Referen
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