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ON THE MULTIPLICITY OF THE SAMPLEMAXIMUM AND THE LONGEST HEAD RUNTam�as F. M�oriE�otv�os Lor�and University, BudapestDediated to Endre Cs�aki on the oasion of his 65th birthdayAbstrat. Tossing a (not neessarily unbiased) oin n times let us denote the lengthof the longest head run by Zn and the number of head runs of suh length by Mn.One Erd}os asked about the asymptoti behavior of Mn as n ! 1, and thesequestions motivated the problems that will be disussed in the present paper.In an array of a double sequene of integer valued random variables, i.i.d. withinrows, let �(n) denote the multipliity of the maximal value in the nth row. In Setion2 the asymptoti distribution of �(n) is omputed. Though limit distribution doesnot exist in the ordinary sense, a.s. limit distribution does, as proved in Setion 3.In Setion 4 the multipliity Mn of the maximal run is investigated in a generalmodel of waiting times. By applying the results of Setions 2 and 3 an asymptotiformula is derived for the distribution of Mn, together with an a.s. limit distributiontheorem.Two interesting examples are disussed in Setion 5. One of them is the motivatingproblem of longest head run, with a generalization of allowing at most d tails inbetween. The other one onerns the longest at segment (or tube, in other words)of a (disrete) random walk.The last setion ontains multivariate extensions.1. IntrodutionLet X1; X2; : : : be an in�nite sequene of i.i.d. Bernoulli random variables, withP (Xi = 1) = p, P (Xi = 0) = 1 � p = q, 0 < p < 1. We an think of the X 'sas suessive tosses by a (not neessarily unbiased) oin, interpreting 1's as headsand 0's as tails. Let us denote the length of the longest head run up to n, and themultipliity of the longest head run by Zn, and Mn, resp. That is,Zn = max fm� k : 0 � k � m � n;Xk+1 = � � � = Xm = 1g ;Mn = n�ZnXi=0 I (Xi+1 = � � � = Xi+Zn = 1) :The problem of haraterizing the limit properties of Mn was posed in [6℄, Prob-lem 2 on p. 62, see also Problem 11 of [3℄. In the present paper we are going toResearh supported by the Hungarian National Foundation for Sienti� Researh, Grant No.T-29621 Typeset by AMS-TEX1



Periodia Math. Hung. 41 (2000), 195{212.show that Mn does not have a limit distribution in the ordinary sense, but it stillhas an a.s. limit distribution. Some results will also be presented on the a.s. limsupbehaviour of the sequene Mn.Sine the lengths of disjoint head runs are independent geometrially distributedrandom variables with parameter q, it is quite natural to begin with the multipliityof the maximum of a random sample from geometri distribution. Results of thattype are found in [1℄, where the asymptoti form of the probability that the samplemaximum is unique (multipliity equals 1) is studied. Here we need a bit more:on the one hand we want to estimate the whole distribution of the maximum,and on the other hand, we also have to deal with joint distribution of maximaorresponding to di�erent sample sizes. Results on the maximum of a sample fromgeometri distribution an easily be generalized to other disrete distributions withstabilizing hazard, and in the paper this general setting will be onsidered wheneverit does not ause too muh ompliation.2. Multipliity of sample maxima: asymptoti distributionIn this setion we onsider a general sheme omprising an array (double se-quene) of random variables, i.i.d. within rows. That is, for every positive integern let Y1;n; Y2;n; : : : ; YN;n be a random sample of size N = Nn from a nonnegativeinteger valued probability distribution P (Yi;n = k) = pk;n; k = 0; 1; : : : , and letqk;n = P (Yi;n � k) = pk;n + pk+1;n + � � � . Suppose N tends to in�nity inreasinglywith n. Consider the sequene of sample maximaWn = max fY1;n; : : : ; YN;ng ;and let �(n) denote the multipliity of Wn, that is, the number of sample elementsYi;n; i � N , being equal to Wn.Lemma 2.1.P (�(n) = m) = 1m! 1Xk=0 (Nnpk;n)m exp (�Nnqk;n) + o(1); (2.1)as n!1.Proof. For 1 � m � N learlyP (�(n) = m) = 1Xk=0P (�(n) = m;Wn = k)= 1Xk=0�Nm�pmk;n (1� qk;n)N�m : (2.2)Let 12 <  < 1, and k(n) = max fk : qk;n � N�g. Then all terms on the right handsides of (2.1) and (2.2) with k � k(n) are asymptotially negligible, sineXk�k(n) (Npk;n)m exp (�Nqk;n) � Nm exp ��N1�� Xk�k(n) pmk;n � Nm exp ��N1�� ;



Periodia Math. Hung. 41 (2000), 195{212.and similarly,Xk�k(n)�Nm�pmk;n (1� qk;n)N�m � Nmm! exp ��(N �m)N�� Xk�k(n) pmk;n = o(1):On the other hand, orresponding terms of the two series above are asymptotiallyequal as n!1, besides, that holds uniformly for k > k(n).�Nm�pmk;n (1� qk;n)N�m � �1� qk(n)+1;n��m 1m! (Npk;n)m exp (�Nqk;n)� �1�N���m 1m! (Npk;n)m exp (�Nqk;n) ;= �1 + o(1)� 1m! (Npk;n)m exp (�Nqk;n) ;and�Nm�pmk;n (1� qk;n)N�m � �1� mN �m ��1� qk(n)+1;n� exp �qk(n)+1;n��N �� 1m! (Npk;n)m exp (�Nqk;n)� �1� mN �m �1� 1N2�N 1m! (Npk;n)m exp (�Nqk;n)= �1� o(1)� 1m! (Npk;n)m exp (�Nqk;n) :In the last inequality we used the fat that (1� x)ex � 1� x2.Remark 2.1. From the proof it is lear that the order of magnitude of the remaindersin (2.1) is O �N�1n �, and this annot be improved for m > 1.Let us introdue the (disrete) hazard funtionrk;n = pk;n=qk;n = P (Yi;n = k j Yi;n � k) :Clearly, qk;n = k�1Yi=0 (1� ri;n) ; pk;n = rk;n k�1Yi=0 (1� ri;n) :When all variables Yi;n are identially distributed, we an suppress n in the sub-sripts of pk;n, qk;n, and rk;n. In the ase of geometri distribution de�ned bypk = qpk�1, k � 1, where 0 < q < 1 is a parameter and p+q = 1, we have qk = pk�1and the hazard is onstant: rk = q. We say that a distribution fpk; k � 0g is ofstabilizing hazard, if rk ! r as k ! 1, where 0 < r < 1. Equivalently, we analso write pk+1=pk ! r. Well-known distributions of this type are, for instane, thenegative binomial distributions of arbitrary order, and the logarithmi distribution.For the sequel we need to de�ne a similar property for arrays. Requiring thatall of the row distributions are of stabilizing hazard, uniformly in n, and with thesame limit r, is ertainly suÆient, but a somewhat weaker ondition will also do,if we add that the sequene of row distributions should inrease stohastially.



Periodia Math. Hung. 41 (2000), 195{212.De�nition 2.1. Assume that qk;n is an inreasing funtion of n for every k =1; 2; : : : . Let �(n) = minfk : Nnqk;n � 1g, then �(n) ! 1 inreasingly. We saythat the array fYi;n : 1 � i � Nn; n � 1g possesses the property of stabilizing hazard(SH, briey), if limn!1 r�(n)+k;n = r 2 (0; 1)for arbitrary integer k.This property enables us to derive a simple asymptoti formula for the distribu-tion of �(n). It will turn out that limit distribution does not exist in the ordinarysense, but in Setion 3 we will show that �(n) does possess a.s. limit distribution,namely a logarithmi one.Let us de�ne the funtions fm; m = 1; 2; : : : by the doubly in�nite seriesfm(x; y) = (1� y)mm! +1Xk=�1 �ykx�m exp ��ykx� ; 0 < x; 0 < y < 1: (2.3)It is easy to see that fm(xy; y) = fm(x; y). Hene the series (2.3) is uniformlyonvergent in the stripe 0 < x; a � y � b (0 < a < b < 1), beausemaxa�y�b; y�x�1 �ykx�m exp ��ykx� � � bkm exp ��ak+1� ; if k � 0;akm exp ��bk+1� ; if k < 0;whih makes a onvergent series. Thus fm(x; y) is ontinuous.Now we show that P1m=1 fm(x; y) = 1. By hanging the order of summation wehave 1Xm=1 fm(x; y) = 1Xm=1 (1� y)mm! +1Xk=�1 �ykx�m exp ��ykx�= +1Xk=�1 1Xm=1 1m! �(1� y)ykx�m exp ��ykx�= +1Xk=�1 exp ��ykx� �exp �(1� y)ykx�� 1�= +1Xk=�1 �exp ��yk+1x�� exp ��ykx��= limk!+1 exp ��ykx�� limk!�1 exp ��ykx�= 1:Lemma 2.2. Suppose SH holds. Let (n) = Nnq�(n);n, thenP (�(n) = m) = fm ((n); 1� r) + o(1); (2.4)as n!1.Proof. Let M be a �xed positive integer. From (2.1) it follows for all suÆientlylarge n thatP (�(n) = m) � 1m! MXk=�M �Nnp�(n)+k;n�m exp ��Nnq�(n)+k;n�+ o(1):



Periodia Math. Hung. 41 (2000), 195{212.Sine Nnp�(n)+k;n � r(1� r)k(n) and Nnq�(n)+k;n � (1� r)k(n)! 0 as n!1,we obtain thatlim infn!1 �P (�(n) = m)� 1m! MXk=�M �r(1� r)k(n)�m exp ��(1� r)k(n)�� � 0for every M > 0, henelim infn!1 hP (�(n) = m)� fm ((n); 1� r)i � 0; m = 1; 2; : : : :On the other hand, lim supn!1 hP (�(n) = m)� fm ((n); 1� r)i= lim supn!1 X1�j 6=mhfj ((n); 1� r)� P (�(n) = j)i� X1�j 6=m lim supn!1 hfj ((n); 1� r)� P (�(n) = j)i= � X1�j 6=m lim infn!1 hP (�(n) = j)� fj ((n); 1� r)i � 0;ompleting the proof.Lemma 2.3. Suppose SH holds, and, in addition,limn!1 NnNn+1 = 1; and limn!1 q�(n);nq�(n);n+1 = 1 (2.5)(this is the ase, for instane, if the n-th row of the array is built up from the �rstn terms of the same i.i.d. sequene). Then the set of limit points of the sequenef(n); n � 1g oinides with the losed interval [1� r; 1℄.Proof. Let �(k) = max fn : Nnqk;n � 1g, that is,N�(k)qk;�(k) � 1 < N�(k)+1qk;�(k)+1:Then �(k) is inreasing; and for n satisfying �(k�1) < n � �(k) we have �(n) = k,beause Nnqk;n � N�(k)qk;�(k) � 1 < N�(k�1)+1qk�1;�(k�1)+1 � Nnqk�1;n:Consequently, (n) � (n+ 1) for �(k � 1) < n < �(k).Now we show that (n) rawls aross the interval [1 � r; 1℄, as n runs from�(k� 1)+ 1 to �(k). First, let n = �(k� 1)+ 1. Then �(n)� 1 = k� 1 = �(n� 1),hene (n) = Nnqk;n = Nnq�(n)�1;n �1� r�(n)�1;n� > 1� r�(n)�1;n � 1� r;(n) = �1� r�(n)�1;n� NnNn�1 q�(n)�1;nq�(n)�1;n�1 (n� 1)� �1� r�(n)�1;n� NnNn�1 q�(n�1);nq�(n�1);n�1 � 1� r;



Periodia Math. Hung. 41 (2000), 195{212.as k !1.Seondly, let �(k � 1) < n < �(k). Then, by (2.5),(n)(n+ 1) = Nnqk;nNn+1qk;n+1 = NnNn+1 � q�(n);nq�(n);n+1 ! 1as k !1.Thirdly, let n = �(k). Then(n) = NnNn+1 q�(n);nq�(n);n+1 Nn+1q�(n+1)�1;n+1 > NnNn+1 q�(n);nq�(n);n+1 ! 1;as k !1; and at the same time (n) � 1 by de�nition.From all these one an readily onlude that (n) osillates between 1� r and 1.As a orollary we obtain that �(n) does not onverge in distribution.3. Multipliity of sample maxima: a.s. limit distributionFrom Lemma 2.2 and Lemma 2.3 it is lear that in the ase of stabilizing hazard�(n) is stohastially bounded, but very often it does not have a limit distributionas n ! 1, beause of the logarithmi periodiity appearing in the asymptotidistribution.Suh a periodiity an be eliminated by a suÆiently strong (e.g. logarithmi)summation proedure, and even the existene of an a.s. limit distribution an oftenbe proved.A sequene of random variables �n is said to have a.s. limit distribution, if forevery real x limt!1 1log t tXn=1 1n I(�n � x) = G(x) a.s. (3.1)with some non-degenerate distribution funtion G(x). Under quite general ondi-tions, (3.1) holds if and only if the sequene of probabilities P (�n � x) is logarith-mially summable to G(x), as it is implied by the following simple lemma.Lemma 3.1. [4℄ Let �1; �2; : : : be a sequene of uniformly bounded random vari-ables (e.g. �n = I(�n � x) � P (�n � x) ), suh that jE (�i�j)j � h(j=i), 1 � i < j,where h is a positive dereasing funtion, andZ 11 h(x)x log x dx �1:Then limt!1 1log t tXn=1 1n �n = 0 a.s.Arrays are not really suitable for investigations of a.s. type, beause the jointdistributions of the rows are indetermined. Therefore, in this setion we will on�neourselves to a single series of i.i.d. random variables Y1; Y2; : : : ; thus �(n) is themultipliity of the maximal value among the �rst n variables. In other words, here



Periodia Math. Hung. 41 (2000), 195{212.we onsider a speial array with Nn = n and Yi;n = Yi. Aording to this, the rowindex n in the subsripts of pk;n, qk;n, and rk;n will be suppressed. We will requirethat the distribution of Yi is of stabilizing hazard. Consequently, our speial arraysatis�es the SH property.In order to apply Lemma 3.1 we �rst have to estimate P (�(n) = m; �(s) = m),n < s. Let �(n; s) = # fi : n < i � s; Yi = maxfYn+1; : : : ; Ysgg.Lemma 3.2. Suppose rk ! r 2 (0; 1). For arbitrary Borel sets A, B, and positiveintegers n < s we have��P (�(n) 2 A; �(s) 2 B)� P (�(n) 2 A)P (�(s) 2 B)�� � C ns ;where the onstant C only depends on the distribution of Yi.Proof. Clearly,��P (�(n) 2 A; �(s) 2 B)� P (�(n) 2 A)P (�(s) 2 B)�� �� ��P (�(n) 2 A; �(s) 2 B)� P (�(n) 2 A; �(n; s) 2 B)��++ ��P (�(n) 2 A)P (�(n; s) 2 B)� P (�(n) 2 A)P (�(s) 2 B)��� 2P (�(n; s) 6= �(s)) :If �(n; s) 6= �(s), there must be a sample element of maximum value among the�rst n ones. By symmetry, the maximal elements are distributed uniformly amongthe sample, thus we an writeP (�(n; s) 6= �(s)) � P (9i � n : Yi =Ws) � nP (Y1 =Ws) == n 1Xk=0 pk (1� qk+1)s�1 = ns 1Xk=0 spk+1 (1� qk+1)s�1 rkrk+1(1� rk) : (3.2)The sum in (3.2) is very similar to that we obtained for P (�(s) = 1) in (2.2), theonly di�erene is that eah term is multiplied by a fator. In the ase of stabilizinghazard those fators onverge to (1� r)�1, thus they are bounded. HeneP (�(n; s) 6= �(s)) � C ns : (3.3)Remark 3.1. In the ase of stabilizing hazard it sounds plausible that E�(s) remainsbounded as s!1, but let us notie that from the proof above it follows thatlim sups!1 E�(s) � (1� r)�1:Indeed, sine �(s) an be deomposed into a sum of interhangeable indiators, wehave E�(s) = sP (Y1 =Ws), that is, E�(s) is just equal to the series in (3.2). Inthe proof of Lemma 2.1 we have pointed out that the beginning of the series (2.2)beomes negligible as s!1, hene it follows that the lim sup of the sum in (3.2)does not exeed (1� r)�1.Now we are in a position to prove the main result of this setion.



Periodia Math. Hung. 41 (2000), 195{212.Theorem 3.1. With probability 1limt!1 1log t tXn=1 1n I (�(n) = m) = rmm log� 11�r� ; m = 1; 2; : : : :Proof. We an apply Lemma 3.1 with h(x) = Cx�1. By Lemma 2.2 we have1log t tXn=1 1n P (�(n) = m) = 1log t tXn=1 1n fm(nq�(n); 1� r) + o(1):Aording to the notation used in the proof of Lemma 2.3, let �(k) denote theinteger part of 1=qk. Then �(k)=�(k + 1) ! 1 � r, hene log �(k) � k log 11�r , ask !1; and for k = 1; 2; : : :S(k) =: �(k)Xn=�(k�1)+1 1n fm(nq�(n); 1� r) = �(k)Xn=�(k�1)+1 1n fm(nqk; 1� r):Thus S(k) appears to be an integral approximating sum. Remembering the prop-erties of the funtion fm(x; y) we getS(k) = �(k)qkZ�(k�1)qk 1x fm(x; 1� r)dx + o(1)= 1Z1�r 1x fm(x; 1� r)dx + o(1) := �+ o(1)as k !1. Sine for �(j � 1) � t < �(j) we an write1log �(j) j�1Xk=1S(k) � 1log t tXn=1 1n fm(nq�(n); 1� r) � 1log �(j � 1) jXk=1S(k);it follows that limt!1 1log t tXn=1 1n P (�(n) = m) = �log 11�r :Let us ompute �.� = 1Z1�r rmm! +1Xk=�1(1� r)kmxm�1 exp ��(1� r)kx� dx= rmm +1Xk=�1 1Z1�r 1(m� 1)! (1� r)kmxm�1 exp ��(1� r)kx� dx



Periodia Math. Hung. 41 (2000), 195{212.= rmm +1Xk=�1 (1�r)kZ(1�r)k+1 1(m� 1)! ym�1e�ydy= rmm 1Z0 1(m� 1)! ym�1e�ydy= rmm :By virtue of Lemma 3.1 the proof is ompleted.4. Multipliity of maximal runsIt is quite easy to see that the (random) number of head runs up to n is asymp-totially npq, thus the multipliity of the longest head run is approximately thesame as that of the maximum of a sample of size npq, drawn from geometri distri-bution with parameter q. Similar, but somehow re�ned, approah an be appliedin the following more general setting.Let (X ;F) be a measurable spae and X1; X2; : : : i.i.d. X -valued random vari-ables with distribution Q. Let Xn;k denote the blok (Xn; Xn+1; : : : ; Xn+k�1).Suppose for every positive integer k we are given a measurable set Bk � Fk suhthat Bk � Bk�1 �X ; Bk � X �Bk�1:Let Ai;j abbreviate the event fXi;j 2 Bjg; if Ai;j ours, we say that a run of lengthj begins at i. De�ne Tk = min fn � k : An�k+1;k oursg ;then T1 < T2 < � � � . Let p(k) = P (A1;k) = P (Tk = k); this is dereasing in k.Assume that p(k) > 0 for every k; then Tk is �nite and it has �nite moments ofarbitrary order. Partiularly, denote ETk shortly by E(k).In [5℄ it is shown that�1� 1E(k)�n [1� kp(k)℄� 2kE(k)p(k)2 � P (Tk � n+ k) � �1� 1E(k)�n (4.1)(see Lemma 2.2 there). These inequalities will prove to be very useful in the sequel.Finally, let us introdue Zn = max fk : Tk � ng (this orresponds to the length ofthe longest head run), and its multipliityMn = # fi � n� Zn + 1 : Xi;Zn 2 BZng.More generally, for n < s letZn;s = max fk � s� n : Xi;k 2 Bk for some n < i � s� k + 1g ;and let Mn;s be its multipliity.In [5℄ it was proved under quite general onditions that Zn has an a.s. limitdistribution, though its asymptoti distribution shows logarithmi periodiity. Here



Periodia Math. Hung. 41 (2000), 195{212.we are going to prove the same for Mn. To do so we will require the followingonditions. limk!1 p(k + 1)=p(k) = p 2 (0; 1); (4.2)limk!1P (A1;k+1 j A1;k \ Aj+1;k�j+1) = 1; j = 1; 2; : : : : (4.3)In [5℄ (ase (ii) of Theorem 3.1) a ondition, very similar to (4.2), was introdued,namely, the existene of a positive, inreasing, di�erentiable funtion f suh thatE(k) � f(k), the limit  := limt!1 (log f(t))0 exists, and it is positive and �nite.Essentially, this means that E(k)=E(k+1)! e�. As we an see from Lemma 4.1below, this latter is implied by our onditions (4.2) and (4.3), too. The meaningof ondition (4.3) is that the ourrenes of the maximal run are all disjoint withprobability tending to 1 as n!1, see the proof of Lemma 4.2.In appliations it is often muh easier to ompute p(k) than E(k) itself. Thoughit is not so hard to see that 1 � p(k)E(k) � k (see Lemma 2.1 of [5℄), (4.2) and(4.3) provide more preise relation between p(k) and E(k).Lemma 4.1. limk!1 p(k)E(k) = 11� p;and hene E(k)=E(k + 1)! p.Proof. Let us introdue Æ = Æ(`; j) asÆ = sup�P �A1;k+1 j A1;k \At+1;k�t+1� : 1 � t � j; ` � k	 :Clearly, limk!1 Æ(k; j) = 0 by (4.3) for every j = 1; 2; : : : ; in addition, we anwrite p(k + 1) � P (A1;k \ At+1;k�t+1) � p(k + 1)1� Æ(k; j) ; 1 � t � j: (4.4)Let us apply the following orollary of Lemma 2.1 of [5℄:limk!1 p(k)E(k) = limj!1 limk!1 p(k)P (Tk = k + j) : (4.5)Here we haveP (Tk = k + j) = P �A1;k \ � � � \Aj;k \ Aj+1;k�� P (Aj+1;k)� P (Aj+1;k \ Aj;k+1) � p(k)� p(k + 1):On the other hand,P (Tk = k + j) � P (Aj+1;k)� P�j�1St=1 �Aj+1;k \At;k \At+1;k� S (Aj+1;k \Aj;k)�� P (A1;k)� j�1Xt=1 P �Aj�t+2;k�j+t \ A1;k \ A1;k+1�� P (A1;k \ A2;k)� p(k + 1)� (j � 1) Æ1� Æ p(k + 1)� 11� Æ p(k + 1)= p(k)� p(k + 1)� jÆ1� Æ p(k + 1):



Periodia Math. Hung. 41 (2000), 195{212.These inequalities, together with (4.2) and (4.5), give the result to be proved.In order to ompute the asymptoti distribution of Mn let us de�ne an array towhih the results of Setion 2 an be applied. Let Nn be an inreasing sequene ofpositive integers, suh that n=Nn is inreasing, andlimn!1Nn = +1; limn!1Nn=Nn+1 = 1; Nn = o (n= logn) : (4.6)Let Rn denote the integer part of n=Nn; and let us divide the sequene X1; : : : ; Xninto Nn bloks of size Rn, plus a last one of length < Nn, if Nn does not dividen. De�ne Yi;n as the length of the maximal run observed in the ith blok, that is,Yi;n = Z(i�1)Rn;iRn , i = 1; 2; : : : ; Nn. For n �xed, these are i.i.d. random variables.Lemma 4.2. With the notation of Setion 2 we havelimn!1P (Wn = Zn; �(n) =Mn) = 1:Proof. Let us see how it an happen that Wn 6= Zn or �(n) 6= Mn. In that aseat least one ourrene of the maximal run is not ounted, beause either (a) itrosses the boundary between two adjaent bloks, (b) it reahes the last, notounted blok, () there is a blok with at least two disjoint ourrenes of themaximal run, or (d) there are two overlapping ourrenes somewhere.Suppose the length of the maximal run is m. Then the probability of ase (a)is estimated by (Nn � 1) (m � 1)p(m); that of ase (b) by (Nn � 1)p(m); and theprobability of ase () is less than NnR2np(m)2. Finally, in ase (d) the probabilityof two overlapping ourrenes is estimated bym�1Xt=1 nP �A1;m \At+1;m \ A1;m+1�� n jXt=1 p(m+ 1)Æ(m; j)1� Æ(m; j) + nXt>j p(t)p(m)= np(m+ 1) jÆ(m; j)1� Æ(m; j) + np(m)Xt>j p(t);for arbitrary j. Here we applied (4.4) to terms with t � j.Let " > 0 be �xed, and hoose j in suh a way that Pt>j p(t) < ". Further, letK = Kn be the largest integer suh thatexp (�n=E(K)) � ":Then K < C logn, and np(K) � C log 1" by Lemma 4.1. (Here and in what followsthe same letter C will denote di�erent onstants, all independent of ".) In addition,by (4.1) we haveP (Zn < K) = P (TK > n) � exp��n�KE(K) � � C":



Periodia Math. Hung. 41 (2000), 195{212.Thus we an write1�P (Wn = Zn; �(n) =Mn) � P (Zn < K)++ Xm�K 24Nmp(m) + [np(m)℄2N + np(m) jÆ(K; j)1� Æ(K; j) + np(m)Xt>j p(t)35� C �"+NKp(K) + [np(K)℄2N + np(K)jÆ(K; j) + np(K)"�� C ""+ N lognn log 1" + 1N �log 1"�2 + jÆ(K; j) log 1" + " log 1"# :Hene lim infn!1 P (Wn = Zn; �(n) =Mn) � 1� C" log 1" ;where " an be arbitrarily small positive number.Lemma 4.3. The array fYi;ng satis�es property SH with r = 1� p.Proof. Sine Rn is inreasing, so is Y1;n, heneqk;n = P (Y1;n � k) � P (Y1;n+1 � k) = qk;n+1:From (4.1) it is lear that P (Tk � n) � n=E(k), if k and n tend to in�nity in suha way that n=E(k)! 0 and k = o(n). Thereforeqk;n = P (Y1;n � k) = P (Tk � Rn) � nNnE(k) (4.7)if the right-hand side onverges to 0, and kNn = o(n). From De�niton 2.1 one animmediately see that �(n) = O(logn), hene q�(n);n � nNnE(�(n)) by (4.6) and(4.7), and also q�(n)+k;n � nNnE(�(n) + k) . Consequently, (n) � nE(�(n)) , and1� r�(n)+k;n = q�(n)+k+1;nq�(n)+k;n � E(�(n) + k)E(�(n) + k + 1) � p;by (4.2) and Lemma 4.1.By ombining Lemmas 4.2, 4.3, 2.2 and 2.3 we an approximate the distributionof Mn.Theorem 4.1. Let �(n) = minfk : E(k) � ng. ThenP (Mn = m) = fm� nE(�(n)) ; p�+ o(1):The set of limit points of n=E(�(n)) is the whole interval [p; 1℄, thus P (Mn = m)does not onverge.Proof. Let d = �(n) � �(n); learly, jdj � 1 for all suÆiently large n. By (4.2),n=E(�(n) + d) � (n)pd, but this hange does not make any di�erene by theperiodiity and ontinuity of fm.The seond part of the Theorem will follow from Lemma 2.3 if we show thatq�(n);n � q�(n);n+1, but this latter is implied by (4.7).Let us pass over to the a.s. limit distribution. It does not appear easy to applyTheorem 3.1 diretly; we are going to use Lemma 3.1 instead. Thus, we have toestimate P (Mn = m; Ms = m), n < s. De�ne `(x) = maxflogx; 1g, x > 0.



Periodia Math. Hung. 41 (2000), 195{212.Lemma 4.4. For arbitrary Borel sets A, B, and positive integers n < s we have��P (Mn 2 A; Ms 2 B)� P (Mn 2 A)P (Ms 2 B)�� � C ns `� sn� :Proof. Exatly in the same way as in the proof of Lemma 3.2 we obtain that��P (Mn 2 A; Ms 2 B)� P (Mn 2 A)P (Ms 2 B)�� � 2P (Mn;s 6=Ms) :If Mn;s 6= Ms, there must be a maximal run beginning in ourse of the �rst nexperiments. Suppose Zs = k, then Tk < n+ k but Tk+1 > s. Thus we an writeP (Mn;s 6=Ms) � P� Tk�1fTk < n+ k; Tk+1 > sg�� P (Tk0 < n+ k0) + P (Tk0 > s) ; (4.8)for arbitrary positive integer k0. Let k0 be the largest integer k suh that1E(k) � 1s `� sn� ;then k0 = O (log s) by (4.2). Terms on the right-hand side of (4.8) are easy toestimate. On the one hand, by Lemma 4.1 we haveP (Tk0 < n+ k0) � np(k0) = O� nE(k0)� = O �ns `� sn�� :On the other hand, by applying (4.1) we an writeP (Tk0 > s) � exp��s� k0E(k0)� = O �ns � :This ompletes the proof.As a orollary, we immediately obtain the a.s. limit distribution of Mn.Theorem 4.2. With probability 1limt!1 1log t tXn=1 1n I (Mn = m) = (1� p)mm log(1=p) ; m = 1; 2; : : : :A proof of this assertion an be given simply by opying that of Theorem 3.1,therefore it will be omitted. 5. ExamplesIn this setion we speialize our results to obtain interesting orollaries in twoimportant partiular ases. Detailed disussion of these models are presented in[2℄, and also in [5℄, where the a.s. limit distribution of Zn is derived.



Periodia Math. Hung. 41 (2000), 195{212.5.1. The longest (d-interrupted) head run.Let X1; X2; : : : be the Bernoulli sequene of the Introdution. For a �xed non-negative integer d de�neBk = �(x1; : : : ; xk) 2 f0; 1gk : x1 + � � �+ xk � k � d	 :Then Zn is the length of the longest blok up to n ontainig at most d zeros (tails),and Mn is its multipliity. Clearly,p(k) � 1d!�qkp �dpk;thus (4.2) holds. On the other hand, P �A1;k \ Aj+1;k�j+1 \ A1;k+1� = 0, if d = 0(the ase of pure head runs), and for d � 1 it is majorized by the probability thatXj+1;k�j ontains exatly d� 1 zeros, whih is approximately1(d� 1)!�qkp �d�1pk�j = o (p(k + 1))as k !1. Thus (4.3) is also satis�ed, and Theorems 4.1 and 4.2 are valid.Partiularly, when d = 0, we have n=E(�(n)) � nqp�(n), therefore Theorem 4.1simpli�es to P (Mn = m) = fm (nq; p) + o(1):5.2. The longest tube of a random walk.Let X1; X2; : : : be i.i.d. integer valued random variables with ommon distribu-tion P (X1 = i) = pi; i 2 Z; these are the steps of a random walk. Assume that forevery i 2 Z there exists a k0 suh that P (X1 + � � �+Xk = i) > 0 for k � k0. Fora �xed positive integer d de�neBk = �(x1; : : : ; xk) 2 Zk : ��� jPt=ixt��� < d; 1 � i � j � k� :A run of length k means that there exists an interval of d integers whih ontainsthe position of the random walk at eah of k onseutive steps. In [5℄ the followingapproximation of p(k) is derived. Let Qd be the d � d matrix with entries pi�j ,1 � i � d, 1 � j � d. If d is large enough, say d � d0, then there exists a k suhthat Qkd is a positive matrix. Let %d denote the maximal harateristi value ofQd, then p(k) � d%kd as k !1 with a suitable multiplier d (see [5℄ for the exatvalue), thus (4.2) is ful�lled. For instane, if X1 is symmetrially distributed, andjX1j � 1, let p1 = p�1 = p, p0 = q = 1� 2p; then%d = q + p os �d+ 1 ; d = 2d+ 1 �ot �2(d+ 1)�2 :If both X1;k and Xj+1;k�j+1 remain within an interval of length d, but X1;k+1does not, then the two intervals annot oinide, thus Xj+1;k�j falls into a shorterinterval. The probability of that is approximately d�1% k�jd�1 . Sine %d�1 < %d, thisprobability vanishes ompared to p(k + 1), as k ! 1. Hene (4.3) follows; andTheorems 4.1 and 4.2 an be applied with p = %d. In addition, by the periodiityof fm we an write P (Mn = m) = fm (nd; %d) + o(1):



Periodia Math. Hung. 41 (2000), 195{212.6. Multivariate extensionsIn this setion multivariate extensions of Lemma 2.2 and Theorem 4.1 will bepresented. First, let us onsider the ase of arrays with i.i.d. random variableswithin rows. Suppose property SH holds. Let us de�ne reursivelyZ1(n) =Wn; Zj(n) = max fYi;n : 1 � i � n; Yi;n < Zj�1(n)g ; j > 1:These random variables list the di�erent values of the sample in dereasing order.Let �j(n) denote the multipliity of Zj(n), that is,�j(n) = # fi � Nn : Yi;n = Zj(n)g :Finally, let us introdue the gaps �j(n) = Zj�1(n)� Zj(n).The following limit theorem an be derived along the same lines as Lemma 2.2was proved.Theorem 6.1. With the notations of Setion 2 we haveP (�1(n) = m1; : : : ; �j(n) = mj ; �1(n) = s1; : : : ; �j(n) = sj) == m!m1! � � �mj ! jYi=1(1� r)si(m1+���+mi) �(1� r)�m � 1� fm((n); 1� r) + o(1);where m = m1 + � � �+mj and n!1.Corollary 6.1. The joint asymptoti distribution of �1(n); : : : ; �j(n) is the follow-ing.P (�1(n) = m1; : : : ; �j(n) = mj) == m!m1! � � �mj ! j�1Yi=1 (1� r)m1+���+mi1� (1� r)m1+���+mi fm((n); 1� r) + o(1):Given �1(n); : : : ; �j(n), the gaps �1(n); : : : ; �j(n) are onditionally asymptotiallyindependent and geometrially distributed, namely, �i(n) with parameter1� (1� r)�1(n)+���+�i(n):Remark 6.1. From the �rst part of Corollary 5.1 it is lear that the asymptoti jointdistribution of �1(n); : : : ; �j(n) given their sum �1(n) + � � �+�j(n) does not su�erfrom logarithmi periodiity; in fat, �1(n); : : : ; �j(n) have a limiting onditionaldistribution.Remark 6.2. If the samples are drawn from geometri distribution of parameter q,then r = p; 1 � r = q and in both of Theorem 5.1 and the �rst part of Corollary5.1 fm((n); 1� r) an be replaed with fm(Nn; q). Besides, the seond part ofCorollary 5.1 is valid not only asymptotially, but also for every �nite n, providedNn > �1(n) + � � �+ �j(n).



Periodia Math. Hung. 41 (2000), 195--212.Finally, let us turn to the waiting times de�ned in Setion 4. Suppose (4.2) and(4.3) hold. De�ne An = f(i; k) : 1 � i � n� k; Xi;k 2 Bi;kg, and letZ1(n) = maxfk : (i; k) 2 Ang;Zj(n) = max fk : (i; k) 2 An; k < Zj�1(n)g ; j > 1:Let Mj(n) denote the multipliity of Zj(n), that is,Mj(n) = # f(i; k) 2 An : k = Zj(n)g ;and let Sj(n) = Zj�1(n) � Zj(n). Then the following generalization of Theorem4.1 an be proved as well.Theorem 6.2. Let �(n) = minfk : E(k) � ng. ThenP (M1(n) = m1; : : : ; Mj(n) = mj ; S1(n) = s1; : : : ; Sj(n) = sj) == m!m1! � � �mj ! jYi=1 psi(m1+���+mi) �p�m � 1� fm� nE(�(n)) ; p�+ o(1);where m = m1 + � � �+mj and n!1.Referenes1. Bruss, F. T. and O'Cinneide, C. A., On the maximum and its uniqueness forgeometri random samples, J. Appl. Prob. 27 (1990), 598{610.2. Cs�aki, E., F�oldes, A. and Koml�os, J., Limit theorems for Erd}os{R�enyi typeproblems, Studia Si. Math. Hungar. 22 (1987), 321{332.3. Erd}os, P. and R�ev�esz, P., Problems and results on random walks, In: P. Bauer, F.Koneny and W. Wertz (eds), Mathematial Statistis and Probability Theory,vol. B, Reidel, Dordreht, 1987, pp. 59{65.4. M�ori, T. F., On the strong law of large numbers for logarithmially weightedsums, Annales Univ. Si. Budapest., Setio Math. 36 (1993), 35{46.5. M�ori, T. F., The a.s. limit distribution of the longest head run, Canad. J. Math.45 (1993), 1245{1262.6. R�ev�esz, P., Random Walk in Random and Non-random Environments, WorldSienti�, Singapore, 1990.Department of Probability Theory and Statistis,E�otv�os Lor�and University,P�azm�any P�eter s. 1/C, Budapest, Hungary H-1117E-mail address: moritamas�ludens.elte.hu


