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ABSTRACT. Tossing a (not necessarily unbiased) coin n times let us denote the length
of the longest head run by Z, and the number of head runs of such length by M,y,.
Once Erd6s asked about the asymptotic behavior of M, as n — oo, and these
questions motivated the problems that will be discussed in the present paper.

In an array of a double sequence of integer valued random variables, i.i.d. within
rows, let p(n) denote the multiplicity of the maximal value in the nth row. In Section
2 the asymptotic distribution of u(n) is computed. Though limit distribution does
not exist in the ordinary sense, a.s. limit distribution does, as proved in Section 3.

In Section 4 the multiplicity M), of the maximal run is investigated in a general
model of waiting times. By applying the results of Sections 2 and 3 an asymptotic
formula is derived for the distribution of My, together with an a.s. limit distribution
theorem.

Two interesting examples are discussed in Section 5. One of them is the motivating
problem of longest head run, with a generalization of allowing at most d tails in
between. The other one concerns the longest flat segment (or tube, in other words)
of a (discrete) random walk.

The last section contains multivariate extensions.

1. INTRODUCTION

Let X7, Xo,... be an infinite sequence of i.i.d. Bernoulli random variables, with
PX;=1)=p, P(X;=0)=1-p=gq,0<p< 1 We can think of the X’s
as successive tosses by a (not necessarily unbiased) coin, interpreting 1’s as heads
and 0’s as tails. Let us denote the length of the longest head run up to n, and the
multiplicity of the longest head run by Z,, and M, resp. That is,

Zn=max{m—-k:0<k<m<nXpy1 ==X, =1},
n—2Zn
My= > T(Xip1 =+ =Xiyz, =1).
i=0

The problem of characterizing the limit properties of M,, was posed in [6], Prob-
lem 2 on p. 62, see also Problem 11 of [3]. In the present paper we are going to
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show that M,, does not have a limit distribution in the ordinary sense, but it still
has an a.s. limit distribution. Some results will also be presented on the a.s. limsup
behaviour of the sequence M,,.

Since the lengths of disjoint head runs are independent geometrically distributed
random variables with parameter g, it is quite natural to begin with the multiplicity
of the maximum of a random sample from geometric distribution. Results of that
type are found in [1], where the asymptotic form of the probability that the sample
maximum is unique (multiplicity equals 1) is studied. Here we need a bit more:
on the one hand we want to estimate the whole distribution of the maximum,
and on the other hand, we also have to deal with joint distribution of maxima
corresponding to different sample sizes. Results on the maximum of a sample from
geometric distribution can easily be generalized to other discrete distributions with
stabilizing hazard, and in the paper this general setting will be considered whenever
it does not cause too much complication.

2. MULTIPLICITY OF SAMPLE MAXIMA: ASYMPTOTIC DISTRIBUTION

In this section we consider a general scheme comprising an array (double se-
quence) of random variables, i.i.d. within rows. That is, for every positive integer
nlet Y1 ,,Y5,,..., YN, be a random sample of size N = N,, from a nonnegative
integer valued probability distribution P (Y;,, = k) = prn, £ = 0,1, ..., and let
Gkon =P (Yin > k) = prn + Piy1.n+---. Suppose N tends to infinity increasingly
with n. Consider the sequence of sample maxima

Wn = maX{Yl,n- . ,YN,n}:

and let u(n) denote the multiplicity of W,,, that is, the number of sample elements
Yin, ¢ <N, being equal to W,.

Lemma 2.1.
Pun) =m) = 3 (Nupin)™ exp (~Nogion) + o)), (2)
k=0

as n — o0.

Proof. For 1 <m < N clearly

NE

P(u(n)=m) = P (u(n) =m, W, = k)
k=0
=2 (Z)P?,n (1—gen)" . (2.2)
k=0

Let % <e<1,and k(n) =max{k : gy, > N~ °}. Then all terms on the right hand
sides of (2.1) and (2.2) with k < k(n) are asymptotically negligible, since

Z (Npi.n)™ exp (=Ng.n) < N™exp (—Nl_c) Z Pin < N™exp (—Nl_c) ,
k<k(n) k<k(n)
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and similarly,
N N—m N —
5 (0ot (= ) < S e (< = mINT) S pi = o)
E<k(n) E<k(n)

On the other hand, corresponding terms of the two series above are asymptotically
equal as n — oo, besides, that holds uniformly for k > k(n).

—m 1

N —m m
(m>p2fn Q—gn)¥ ™ < (1~ Qr(n)41,n) - (Npk,n)" exp (=Ngk,n)

—m 1

< (l - Nﬁc) ml (Npk,n)m exp (—Ngk,n) ,

= (1+0(1)) % (Nprn)™ exp (= Nag,n) ,

and

N

NN\ . —m mym
(ot 1= a0 2 (1= 50) " 10 = ) 30 aneye1.)) ™ %

1 m
X W (Npk,n) €xXp (_qu,n)

(1-2)" (1= ) "

v

(1-0(1)) % (Npk,n)" exp (—Nap,p) -

In the last inequality we used the fact that (1 — z)e® > 1 — 22

Remark 2.1. From the proof it is clear that the order of magnitude of the remainders
n (2.1) is O (N;'), and this cannot be improved for m > 1.

Let us introduce the (discrete) hazard function

Tkn = pk,n/Qk,n =P (Y;n =k ‘ Y;n > k)

Clearly,
k-1 k—1
Qk,n = H (1 - Ti,n) sy Pk = Tkn H (1 - Ti,n) .
i=0 =0

When all variables Y; ,, are identically distributed, we can suppress n in the sub-
scripts of pgn, Qk,n, and 7. In the case of geometric distribution defined by
pr =gp® ', k> 1, where 0 < ¢ < 1is a parameter and p+q = 1, we have g = p*~!
and the hazard is constant: rp = ¢. We say that a distribution {py, &k > 0} is of
stabilizing hazard, if r, — r as k — oo, where 0 < r < 1. Equivalently, we can
also write pyy1/pr — r. Well-known distributions of this type are, for instance, the
negative binomial distributions of arbitrary order, and the logarithmic distribution.

For the sequel we need to define a similar property for arrays. Requiring that
all of the row distributions are of stabilizing hazard, uniformly in n, and with the
same limit r, is certainly sufficient, but a somewhat weaker condition will also do,
if we add that the sequence of row distributions should increase stochastically.
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Definition 2.1. Assume that g, is an increasing function of n for every k =
1,2,.... Let k(n) = min{k : Npgx, < 1}, then k(n) — oo increasingly. We say
that the array {Y; , : 1 <4 < N,,n > 1} possesses the property of stabilizing hazard
(SH, briefly), if

lim 7,460 =7 € (0, 1)

n—oc

for arbitrary integer k.

This property enables us to derive a simple asymptotic formula for the distribu-
tion of u(n). It will turn out that limit distribution does not exist in the ordinary
sense, but in Section 3 we will show that p(n) does possess a.s. limit distribution,
namely a logarithmic one.

Let us define the functions f,,, m = 1,2,... by the doubly infinite series

(1—y)™ Jf (k m .k
—_— ym) exp( ym), O<z, O<y<1l. (2.3)

k=—o00

Jm(2,y) =

m!

It is easy to see that f,.(zy,y) = fm(z,y). Hence the series (2.3) is uniformly
convergent in the stripe 0 < z, a <y < b (0 < a < b < 1), because

Vi exp (—aftl), i k>0
k m k ) - Y
max z) exp(—yz) <

a<y<b,y<z<1 (v*2) p(-y'z) < { a*mexp (—bFT1) . if k <0,
which makes a convergent series. Thus f,,(z,y) is continuous.

Now we show that Zzzl fm(z,y) = 1. By changing the order of summation we
have

o) o) . m oo m
S o) = 3 LTS (k)" exp ()
m=1 m=1 k=—o0

+oo [e%e] 1

Il
g
M

—la- y)y*a]™ exp (—y*z)

= Z exp (—y"z) [exp (1 - y)y*z) — 1]

k=—oc

Z [exp (—y’”lx) — exp (—ykx)}

k=—oc

_ : _ .k 1 .k
-l o (412 - (41
=1.
Lemma 2.2. Suppose SH holds. Let c(n) = NpGy(n),n, then
P (p(n) =m) = fm(c(n),1—71) +o0(1), (2.4)

as n — o0.

Proof. Let M be a fixed positive integer. From (2.1) it follows for all sufficiently
large n that

Plutn)=m)> -

Y%

M
— > (Nabaimyrhn) " exD (= Nubs(mypa,n) +0(1).
k=—M
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Since Nppu(n)+kn ~ (1 — r)ke(n) and NnGr(n)+kn — (1= rke(n) — 0 as n — oo,
we obtain that

n—oc

lim inf [P (u(n) =m) — — Z [r(1- r)kc(n)]mexp (=(1=r)fem))| >0

for every M > 0, hence

liminf[P(,u(n) =m) — fm (c(n), 1 —r)} >0, m=1,2,....

n—o0

On the other hand,

lim sup {P (u(n) =m) — fm (c(n), 1 — 7”)}

n—oc

= lim sup Z [fj (c(n), l—r)—P(,u(n):j)}

n—00 1<j#m

< Y timsup|f (e(n), 1=r) = P (u(n) = j)]

1<j#m n—00

== > timinf [P (u(n) = j) = f; (c(n), 1=7)| <0,
1<j#m

completing the proof.
Lemma 2.3. Suppose SH holds, and, in addition,

lim " =1, and lim ntn)in_
n—o0o N1 N0 () nt1

=1 (2.5)

(this is the case, for instance, if the n-th row of the array is built up from the first
n terms of the same i.i.d. sequence). Then the set of limit points of the sequence
{c(n), n > 1} coincides with the closed interval [1 —r, 1].

Proof. Let v(k) = max {n : Npqr,n < 1}, that is,

Noy@r,wiry <1< Nyry£10,0(k)+1-

Then v(k) is increasing; and for n satisfying v(k—1) < n < v(k) we have k(n) = k,
because

Nogrn < Noy@ewir) <1< Noyge—)41@-1,00-1)+1 < NnQr—1,n-

Consequently, ¢(n) < ¢(n+ 1) for v(k — 1) <n < v(k).

Now we show that ¢(n) crawls across the interval [1 — r, 1], as n runs from
v(k—1)+1towv(k). First,let n =v(k—1)+ 1. Then k(n) —1=k—1=kr(n—1),
hence

C(n) = quk,n = Nn‘]m(n)fl,n (1 - Tﬁ(n)fl,n) >1- Tk(n)—1,n ™~ 1—r,

Nn qn(n)—l,n
e(n) = (1= rum-1n) 37— r(m)—1,n—1

e(n—1)

Nn QN(nfl),n
Nyt Qx(n—1),n—1

< (1 - rn(n)fl,n) ~1- r,
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as k — oo.
Secondly, let v(k — 1) < n < v(k). Then, by (2.5),

c(n) — Nan,n _ Ny . dk(n),n N
cm+1)  Npt1Geari Nott Gem)ntt
as k — oo.
Thirdly, let n = v(k). Then
N, Ak(n),n N, Ak(n),n

c(n) = Not1uni)—1,n41 > N o =1,

Nit1 Gr(n),nt1 n+1 Qr(n),n+1

as k — oo; and at the same time ¢(n) < 1 by definition.
From all these one can readily conclude that ¢(n) oscillates between 1 —r and 1.

As a corollary we obtain that u(n) does not converge in distribution.

3. MULTIPLICITY OF SAMPLE MAXIMA: A.S. LIMIT DISTRIBUTION

From Lemma 2.2 and Lemma 2.3 it is clear that in the case of stabilizing hazard
p(n) is stochastically bounded, but very often it does not have a limit distribution
as n — 00, because of the logarithmic periodicity appearing in the asymptotic
distribution.

Such a periodicity can be eliminated by a sufficiently strong (e.g. logarithmic)
summation procedure, and even the existence of an a.s. limit distribution can often
be proved.

A sequence of random variables (, is said to have a.s. limit distribution, if for
every real x

1 1
— Z - I(¢, <z)=G(z) as. (3.1)

im
t—oo logt

n=1

with some non-degenerate distribution function G(z). Under quite general condi-
tions, (3.1) holds if and only if the sequence of probabilities P({, < x) is logarith-
mically summable to G(z), as it is implied by the following simple lemma.

Lemma 3.1. [4] Let &,&, ... be a sequence of uniformly bounded random vari-
ables (e.g. &, = I((n < ) — P(Gn < ), such that |[E (§&;)] < h(j/i), 1 <i<j,
where h is a positive decreasing function, and

< h
/ ﬂdxgoo.
1 xlogzx

1 1
tll)l’glc @;Eénzo a.s.

Then

Arrays are not really suitable for investigations of a.s. type, because the joint
distributions of the rows are indetermined. Therefore, in this section we will confine
ourselves to a single series of i.i.d. random variables Y7, Y5, ... ; thus u(n) is the
multiplicity of the maximal value among the first n variables. In other words, here
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we consider a special array with N,, = n and Y; , = Y;. According to this, the row
index n in the subscripts of pi n, Gk,n, and 74, will be suppressed. We will require
that the distribution of Y; is of stabilizing hazard. Consequently, our special array
satisfies the SH property.

In order to apply Lemma 3.1 we first have to estimate P (u(n) = m, u(s) = m),
n<s. Let u(n,s)=#{i:n<i<s, ¥;=max{Vpq1,..., Ys}}.

Lemma 3.2. Suppose ry — r € (0, 1). For arbitrary Borel sets A, B, and positive
integers n < s we have

P (u(n) € A, (s) € B) — Pu(n) € A) P(u(s) € B)| < C 2,

where the constant C only depends on the distribution of Y;.
Proof. Clearly,

P (u(n) € A, u(s) € B) = P (u(n) € A) P (u(s) € B)| <
< [P(u(n) € A, p(s) € B) - P(u(n) € A, p(n,s) € B)|+

+ [P (u(n) € A) P (u(n, s) € B) = P (u(n) € A) P (u(s) € B),
< 2P (u(n,s) # p(s)).

If pu(n,s) # u(s), there must be a sample element of maximum value among the
first n ones. By symmetry, the maximal elements are distributed uniformly among
the sample, thus we can write

P(p(n,s) # p(s)) SP@Ei<n:Y;=W,) <nP (Y1 =W,) =
00 . n 00 .
=nY pr(1—grp1)"" =3 > spkin (1= i)™

k=0 k=0

Tk
—. (3.2
Tk+1 (1 — Tk) ( )
The sum in (3.2) is very similar to that we obtained for P (u(s) = 1) in (2.2), the
only difference is that each term is multiplied by a factor. In the case of stabilizing
hazard those factors converge to (1 —r)~!, thus they are bounded. Hence

P (u(n.s) # u(s)) < C = (3.3)

Remark 3.1. In the case of stabilizing hazard it sounds plausible that Eu(s) remains
bounded as s — oo, but let us notice that from the proof above it follows that

limsup Ep(s) < (1—7)"'.

§— 00
Indeed, since p(s) can be decomposed into a sum of interchangeable indicators, we
have Eu(s) = sP (Y1 = W), that is, Eu(s) is just equal to the series in (3.2). In
the proof of Lemma 2.1 we have pointed out that the beginning of the series (2.2)
becomes negligible as s — oo, hence it follows that the lim sup of the sum in (3.2)
does not exceed (1 —r)~L.
Now we are in a position to prove the main result of this section.
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Theorem 3.1. With probability 1

t
. _ _ r _
tli)rgc @T;—I(u(n)—m)—4 m=1,2,....

Proof. We can apply Lemma 3.1 with h(z) = Cz~!

1 t
_tz_:

. By Lemma 2.2 we have

t
1 1
Tog Z - fm(NG(ny, 1 —7) +o(1).

n=1

3IH
I

According to the notation used in the proof of Lemma 2.3, let v(k) denote the

integer part of 1/q;. Then v(k)/v(k+1) — 1 — r, hence logv(k) ~ klog -, as
k—oo;and for k=1,2, ...

v(k)

v (k)
1 1
SOEED DS RIS LD DS A Bk
n=v(k—1)+1 n=v(k—1)+1

Thus S(k) appears to be an integral approximating sum. Remembering the prop-
erties of the function f,,(z,y) we get

v(k)ar

S(k) = / 1 fm(z, 1 —r)dz + o(1)
v(k=1)q

/ fm(z,1 —r)dx 4+ o(1) := a+ o(1)

as k — oo. Since for v(j — 1) <t < v(j) we can write

1 1 1 !
. Sk) < — )  — fm(ngy(n), 1 —7) < 77— ) S(k),
logv(j) kz:; (k) logtnz::ln m (M) ) loglx(]—l)kz::1 (k)
it follows that
PRLE SE T
t—oo logtn:1 no ~ log lir
Let us compute a.
Pm +
a—/ i:.o L—r)fmemLexp (—(1 —r)Fz) dz
m! P
k=—o0c
rm +°°
/ — - r)kmem=lexp (—(1 - r)*z) dz

k=—o00 1",
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(1=r*

+oo
T.m 1 m—1_-—y
= — I d
W / (m—1)! y €y
T 1)kt

T m—1 . —y
= d
m/(m—l)!y o

0

By virtue of Lemma 3.1 the proof is completed.

4. MULTIPLICITY OF MAXIMAL RUNS

It is quite easy to see that the (random) number of head runs up to n is asymp-
totically npg, thus the multiplicity of the longest head run is approximately the
same as that of the maximum of a sample of size npq, drawn from geometric distri-
bution with parameter ¢q. Similar, but somehow refined, approach can be applied
in the following more general setting.

Let (X,F) be a measurable space and X;, Xo,... i.i.d. X-valued random vari-
ables with distribution Q. Let X, ; denote the block (X, Xpni1,..., Xnyr—1)-

Suppose for every positive integer k we are given a measurable set By C F* such
that

By C Br_1 x X, B, C X x Bp_1.

Let A; ; abbreviate the event {X; ; € B;}; if A; ; occurs, we say that a run of length
j begins at ¢. Define

Ty =min{n >k : Ay_g41,, occurs};

then Ty < Ty < ---. Let p(k) = P(A1 ) = P (T = k); this is decreasing in k.
Assume that p(k) > 0 for every k; then Ty is finite and it has finite moments of
arbitrary order. Particularly, denote ET}, shortly by E(k).

In [5] it is shown that

1 \" 1\
1— —— ) [1—kp(k)] - 2kE(k)p(k)* < P (T} > Ey<|1l-—== 4.1
(1= 5 ) 1= wl9] = 2B @R < PTz 0+ 0 < (1= 505 ) @D
(see Lemma 2.2 there). These inequalities will prove to be very useful in the sequel.

Finally, let us introduce Z,, = max {k : Ty, < n} (this corresponds to the length of
the longest head run), and its multiplicity M, = #{i<n—-Z,+1: X, z, € Bz, }.
More generally, for n < s let

Zns=max{k <s—mn:X;, € B for somen <i<s—k+1},

and let M, ; be its multiplicity.

In [5] it was proved under quite general conditions that Z, has an a.s. limit
distribution, though its asymptotic distribution shows logarithmic periodicity. Here
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we are going to prove the same for M,. To do so we will require the following
conditions.

Jim p(k +1)/p(k) = p € (0, 1), (4.2)
kli)H;cP (A17k+1 | Al,k n Aj+1,k—j+1) = 1, ] = 1,2, e . (43)

In [5] (case (ii) of Theorem 3.1) a condition, very similar to (4.2), was introduced,
namely, the existence of a positive, increasing, differentiable function f such that
E(k) ~ f(k), the limit ¢ := lim;_, o, (log f(t))" exists, and it is positive and finite.
Essentially, this means that E(k)/E(k+1) — e °. As we can see from Lemma 4.1
below, this latter is implied by our conditions (4.2) and (4.3), too. The meaning
of condition (4.3) is that the occurrences of the maximal run are all disjoint with
probability tending to 1 as n — oo, see the proof of Lemma 4.2.

In applications it is often much easier to compute p(k) than E(k) itself. Though
it is not so hard to see that 1 < p(k)E(k) < k (see Lemma 2.1 of [5]), (4.2) and
(4.3) provide more precise relation between p(k) and E(k).

Lemma 4.1.

Jim p(k)E(k) = T
and hence E(k)/E(k +1) — p.
Proof. Let us introduce 6 = §(¢, j) as

é = sup {P (Zl’]ﬁq ‘ Al,k N At+1,k7t+1) 1<t <4, £> k} .

Clearly, limy_, 0(k,j) = 0 by (4.3) for every j = 1,2,... ; in addition, we can
write (i 1)
pk+ .
k+1) <P(Ai1xNA _ < ——, 1<t<g. 4.4
p(k+1) <P (A1g N Apr k—t41) < otk LStS (4.4)
Let us apply the following corollary of Lemma 2.1 of [5]:
: - p(k)
1 Ek) =1 1 - 4.
Jm pRER) = lim Y S = k1) (45)

Here we have

P(Ty, =k +]) =P (Zl,k n--- ﬁZch N Aj+17k)
SP(Ajpp) = P(Ajrie N Ajrer) <p(k) — plk+1).
On the other hand,

j—1 _
P(Tk =k +]) > P(Aj+1’k) - P( U (Aj+1,k n At,k n At+1,k) U (Aj+1’k n Aj;k))

t=1
i1
> P (Ag) — ZP (Aj—tg2h—jrt N AL N AL 1) — P (ALp N Az )
=1
S plh41) = (= 1) k4 1) — —— p(k + 1)
> p( — =Dy —15?
1)
= p(k) = plk +1) = =" p(k + 1),

1-6
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These inequalities, together with (4.2) and (4.5), give the result to be proved.

In order to compute the asymptotic distribution of M, let us define an array to
which the results of Section 2 can be applied. Let N, be an increasing sequence of
positive integers, such that n/N,, is increasing, and

lim N, = +oc, lim Np/Npy1 =1, Np,=o0(n/logn). (4.6)
n—o0

n—o0

Let R, denote the integer part of n/N,; and let us divide the sequence X1,..., X,
into IV,, blocks of size R,,, plus a last one of length < N,,, if N,, does not divide
n. Define Y; ,, as the length of the maximal run observed in the ith block, that is,

Yin = Z(i-1)Rn,iRn> # = 1,2,..., Ny,. For n fixed, these are i.i.d. random variables.

Lemma 4.2. With the notation of Section 2 we have

lim P(W, = Z,, p(n) = M,) = 1.

n—o0

Proof. Let us see how it can happen that W,, # Z, or u(n) # M,. In that case
at least one occurrence of the maximal run is not counted, because either (a) it
crosses the boundary between two adjacent blocks, (b) it reaches the last, not
counted block, (¢) there is a block with at least two disjoint occurrences of the
maximal run, or (d) there are two overlapping occurrences somewhere.

Suppose the length of the maximal run is m. Then the probability of case (a)
is estimated by (N, — 1) (m — 1)p(m); that of case (b) by (N, — 1)p(m); and the
probability of case (¢) is less than N,, R2p(m)?. Finally, in case (d) the probability
of two overlapping occurrences is estimated by

npP (Al,m NAir1,m N Z1,m+1)

<0y PRI 0 S poptm)

= np(m + 1)% + np(m) Zp(t):

for arbitrary j. Here we applied (4.4) to terms with ¢ < j.

Let € > 0 be fixed, and choose j in such a way that >_,; p(t) < e. Further, let
K = K,, be the largest integer such that

exp (—n/E(K)) <e.

Then K < C'logn, and np(K) < Clog L by Lemma 4.1. (Here and in what follows
the same letter C will denote different constants, all independent of €.) In addition,
by (4.1) we have

n—K

P(Z,<K)=P(Tk >n) <exp (_E(K)

>§C<€.
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Thus we can write
1=P (Wy = Za, pn) = M) < P (Zn < K) +

+ Z {Nmp [ EV)} +np(m)%+np Zp }
m>K t>j
<0 [e+ o)+ IO )00 ) + )]

Nlogn 1

1 AU | 1
C log—+ = (log—| +jo(K,j)log— +elog—]|.
e N € € €

£+

IN

Hence .
liminf P (W,, = Z,,, u(n) = M,) > 1 - Celog o

n—oc

where € can be arbitrarily small positive number.
Lemma 4.3. The array {Y; ,} satisfies property SH withr =1—p

Proof. Since R, is increasing, so is Y7 5, hence

Qk,n = P(Yl,n > k) < P(Yl ntl 2 k) = qk,n+1-
From (4.1) it is clear that P (T < n) ~ n/E(k), if k and n tend to infinity in such
a way that n/E(k) — 0 and k = o(n). Therefore

)-
Ghn =P (Yo 2 k) = P (T < Bn) ~ & g(k)

if the right-hand side converges to 0, and kN,, = o(n). From Definiton 2.1 one can

(4.7)

immediately see that x(n) = O(logn), hence g, (n),, ~ m by (4.6) and

n n
Consequently, ¢(n) ~ ,
E(k(n))

N,E(k(n) + k)
Qr(n)+k+1,n E(k(n) + k)
~ ~ p’
Ak (n)+k,n E(’i(n) +k+ 1)

(4.7), and also Gy (n)1k,n ~

1- Tk(n)+k,n =

by (4.2) and Lemma 4.1.

By combining Lemmas 4.2, 4.3, 2.2 and 2.3 we can approximate the distribution
of M,,.

Theorem 4.1. Let A(n) = min{k : E(k) > n}. Then
P (M, =m) = fm(m, p) +o(l).

The set of limit points of n/E(\(n)) is the whole interval [p, 1], thus P (M, = m)
does not converge.

Proof. Let d = A(n) — k(n); clearly, |d| < 1 for all sufficiently large n. By (4.2),
n/E(k(n) + d) ~ ¢(n)p?, but this change does not make any difference by the
periodicity and continuity of f,,.

The second part of the Theorem will follow from Lemma 2.3 if we show that
Qi(n),n ~ Qr(n),n+1, but this latter is implied by (4.7).

Let us pass over to the a.s. limit distribution. It does not appear easy to apply
Theorem 3.1 directly; we are going to use Lemma 3.1 instead. Thus, we have to
estimate P (M, = m, Ms; =m), n < s. Define {(z) = max{logz,1}, z > 0.
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Lemma 4.4. For arbitrary Borel sets A, B, and positive integers n < s we have

|P (M, € A, M, € B) — P(M, € A) P(M, € B)| g(j%g(%)_

Proof. Exactly in the same way as in the proof of Lemma 3.2 we obtain that
‘P(Mn €A M;eB)—P(M, e AP (Me B)| < 2P (Mys # Ms).

If My s # M,, there must be a maximal run beginning in course of the first n
experiments. Suppose Zs; = k, then T, < n + k but Ti4+1 > s. Thus we can write

P(Mn7s#Ms)§P<ﬂ{Tk<n+k‘, Thi1 >S}>
E>1

< P(Thy <n+ko)+P(Ty, >s), (4.8)

for arbitrary positive integer kg. Let ko be the largest integer k such that
“(3):
n

then kg = O (logs) by (4.2). Terms on the right-hand side of (4.8) are easy to
estimate. On the one hand, by Lemma 4.1 we have

1 1
s

n

P (Th, < n+ ko) < np(ko) = O (%) -0 (gz(%)) .

On the other hand, by applying (4.1) we can write

P (T, > s) <exp (— SE?kﬁ;) =0 <g) .

This completes the proof.

As a corollary, we immediately obtain the a.s. limit distribution of M,,.
Theorem 4.2. With probability 1

t

: 1 1 1-p™
1 — - I (M, = = —— =1,2,....
v logt z:l n (Mp =m) mlog(1/p)’ mens

n=

A proof of this assertion can be given simply by copying that of Theorem 3.1,
therefore it will be omitted.

5. EXAMPLES

In this section we specialize our results to obtain interesting corollaries in two
important particular cases. Detailed discussion of these models are presented in
[2], and also in [5], where the a.s. limit distribution of Z,, is derived.
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5.1. The longest (d-interrupted) head run.

Let X7, X5,... be the Bernoulli sequence of the Introduction. For a fixed non-
negative integer d define

Bk:{(xl,...,xk)e{(], l}k:ZL'l-F"'—I‘ZUka‘—d}.

Then Z, is the length of the longest block up to n containig at most d zeros (tails),
and M, is its multiplicity. Clearly,

1 (qgk dk
p(k)Nd!(p>p,

thus (4.2) holds. On the other hand, P (Al,k NAjrik—j+1 N Zl’k+1) =0,ifd=0
(the case of pure head runs), and for d > 1 it is majorized by the probability that
Xjt+1,.—; contains exactly d — 1 zeros, which is approximately

d—1
(d_l 1)! (%) P =o(p(k +1))

as k — oo. Thus (4.3) is also satisfied, and Theorems 4.1 and 4.2 are valid.

Particularly, when d = 0, we have n/E(\(n)) ~ ngp*™, therefore Theorem 4.1
simplifies to

P (M, =m) = fn(ng, p) +o(1).

5.2. The longest tube of a random walk.

Let X1, X5, ... bei.i.d. integer valued random variables with common distribu-
tion P(Xy = 1) = p;, i € Z; these are the steps of a random walk. Assume that for
every i € Z there exists a kg such that P(X; + -+ Xy =) > 0 for k > kqo. For
a fixed positive integer d define

J
Bk:{(xl,...,xk)EZk: th‘<d, 1§i§j§k}.
t=i

A run of length k& means that there exists an interval of d integers which contains
the position of the random walk at each of k consecutive steps. In [5] the following
approximation of p(k) is derived. Let ()4 be the d x d matrix with entries p;_;,
1<i<d, 1< j<d. If dis large enough, say d > dy, then there exists a k such
that Q’é is a positive matrix. Let g; denote the maximal characteristic value of
Qa, then p(k) ~ cqok as k — oo with a suitable multiplier ¢4 (see [5] for the exact
value), thus (4.2) is fulfilled. For instance, if X; is symmetrically distributed, and
Xq| <1, let pr =p_1 =p, po =q=1-2p; then

——l-cos?r c—icotLQ
QA= ATPES T T a1 20d+1)) -

If both X, and Xy 4—j+1 remain within an interval of length d, but X 11
does not, then the two intervals cannot coincide, thus X;;4 x—; falls into a shorter
interval. The probability of that is approximately cd,lgf:lj. Since p4-1 < g, this
probability vanishes compared to p(k + 1), as k — oo. Hence (4.3) follows; and
Theorems 4.1 and 4.2 can be applied with p = g4. In addition, by the periodicity
of f,, we can write

P (M, =m) = fn (nca, 0a) + o(1).
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6. MULTIVARIATE EXTENSIONS

In this section multivariate extensions of Lemma 2.2 and Theorem 4.1 will be
presented. First, let us consider the case of arrays with i.i.d. random variables
within rows. Suppose property SH holds. Let us define recursively

Zi(n) =Wy, Zjn)=max{Y;,:1<i<n, Y, <Z;_1(n)}, j>1.

These random variables list the different values of the sample in decreasing order.
Let p1;(n) denote the multiplicity of Z;(n), that is,

pj(n) = #{i < Np: Y0 = Zj(n)}.

Finally, let us introduce the gaps o;(n) = Z;_1(n) — Z;(n).
The following limit theorem can be derived along the same lines as Lemma 2.2
was proved.

Theorem 6.1. With the notations of Section 2 we have

v
=
S

]

mi, -, uj(n) = m]-’ 01(ﬂ) = S1y -+, O']'(’n) = S]') =

_ Lm,H(l — ) OmE ) (1 )= ] f(e(n), 1 - ) + o1),

l... .
mq: i

where m =my +---+m; and n — oc.

Corollary 6.1. The joint asymptotic distribution of p1(n), ..., u;j(n) is the follow-
ng.
P (i (n) = m, ..., pj(n) = mj) =

ml (1 pymatem

- my! m]l H 1— (1—p)mitotm fm(e(n),1 —1) 4+ o(1).

Given pi(n), ..., u;(n), the gaps o1(n),...,0;(n) are conditionally asymptotically
independent and geometrically distributed, namely, o;(n) with parameter

1— (1 _ r)u1(n)+---+ui(n)_

Remark 6.1. From the first part of Corollary 5.1 it is clear that the asymptotic joint
distribution of pi(n),. .., 1;(n) given their sum p;(n)+ - -+ p;(n) does not suffer

from logarithmic periodicity; in fact, pi(n), ..., p;(n) have a limiting conditional
distribution.

Remark 6.2. If the samples are drawn from geometric distribution of parameter ¢,
then r = p, 1 — r = ¢ and in both of Theorem 5.1 and the first part of Corollary
5.1 fm(c(n),1—r) can be replaced with f,,(N,,q). Besides, the second part of
Corollary 5.1 is valid not only asymptotically, but also for every finite n, provided
Np > pr(n) + -+ pj(n).
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Finally, let us turn to the waiting times defined in Section 4. Suppose (4.2) and
(4.3) hold. Define A, = {(i,k) : 1 <i<n—k, X; € By}, and let

Z1(n) = max{k: (i,k) € A,},
Zi(n) =max{k: (i,k) € Ap,k < Zj_1(n)}, j > 1.

Let M;(n) denote the multiplicity of Z;(n), that is,
Mj(n) = #{(i,k) € An : k= Z;(n)},

and let S;(n) = Z;_1(n) — Z;(n). Then the following generalization of Theorem
4.1 can be proved as well.

Theorem 6.2. Let A(n) = min{k : E(k) > n}. Then

P(Mi(n) =ma, ..., Mj(n) =my, Si(n) =51, ..., Sj(n) =s;) =
m! J n
— si(mit-+m;) [, —m _
o L7 =™ — 1] fm(E(/\(n))’p) +o(1),
i=1
where m =my +---+m; and n — oc.
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