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ABSTRACT. For important classes of symmetrically distributed random variables X
the smallest constants C, are computed on the right-hand side of Chebyshev’s in-
equality P(|X| > t) < Co E|X|*/t*. For example if the distribution of X is a scale
mixture of centered normal random variables, then the smallest C2 = 0.331... and,
as a — 00, the smallest Cy | 0 and aCo — /2/7.

INTRODUCTION
Chebyshev’s classical inequality says that

Var(X

P(X ~ B(X)| > 1) < Y2
holds for every positive ¢. This general inequality is valid for all random variables
X with finite variance. For the sake of historical correctness we should call this
inequality the Bienaymé-Chebyshev inequality (see [1], [3] for the original works
and [9] and [10] for excellent historical accounts). The price of this generality is
that in many cases the inequality is far from being sharp. For example, when the
distribution of X is symmetric unimodal, Chebyshev’s inequality can be improved
as follows

4 Var(X)
PX|>t) < = ————=

(see [7]). It is interesting to note that Gauss submitted this inequality to the
Royal Scientific Society of Gottingen in 1821, in the same year when Chebyshev
was born. Gauss’ paper was published in 1823. Some of the most recent nice pa-
pers on this inequality are [5], [6], [12], [13]. The aim of the present note is to
improve Chebyshev’s result in particular cases that still preserve the possibility of
important applications. An important class of distributions is the scale mixture of
(centered) normal distributions. This class contains many heavy tailed distribu-
tions (e.g. all symmetric stable distributions) frequently applied. Another class is
the scale mixture of Student’s ¢-distributions. According to [2] and [8], the distri-
butions of logarithmic asset returns can often be fitted extremely well by Student’s
t-distribution.
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Let I be the cumulative distribution function (cdf) of a fixed symmetric distri-
bution and denote the corresponding survival function by F' =1 — F. Our goal is
to find a Chebyshev type inequality for the random variable X whose cdf is a scale
mixture of F'. We are interested in the smallest C' such that

Var(X
P(x| 2t < 0 Y E)
12
for every positive t.

More generally, since we do not necessarily want to require finite variance, let us
rather, with given a > 0, look for the minimal value of C\, satisfying

for every t > 0. When doing so, we assume that the moment of order « of the base
distribution F,

P(IX] > t) < Cq

“+oo
M, = / |2|%dF (2),

is finite.

Even more generally, for given ¢t and z = E|X|“ we seek the maximum of y =
P(|X] = 1).

In the following C, always denotes the smallest possible constant in the right
hand side of (1) for which (1) holds. We call C,, the Chebyshev constant.

Our main result is the following Chebyshev-type inequality.

Theorem 1. Suppose that F' has a density f, which is continuous and positive over
a finite or infinite interval, and 0 outside of it. Suppose further, that for z > 0,
212 f(2) is initially increasing, then decreasing. Let z, be the smallest positive root
of the equation

zf(2)

70) =a. (2)

[24 is the point where f(2)/F(z), the force of mortality in actuarial science or the
failure rate in reliability theory, equals a/z.] In terms of this zo and

B Elea 1/a
e= =
2F (20)22t™ %, if t > 24,
max P(|X| > to) = 3)
2 F(t) otherwise.

we have

Consequently the Chebyshev constant in (1) is

_ 2F(2q4)2%
R ()
zf'(2)
f(z)

z > 0, then our condition is satisfied, and the positive root of equation (2) is unique.

If f is differentiable on (0,+00), and is a strictly decreasing function of
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PROOF OF THEOREM 1

We apply the convexity method, which has often proved to be a good tool for
moment type inequalities concerning mixtures (see [4] or [11]). Let us consider the
curve of the cdf F(t/o), where o > 0 is arbitrary. Since

T = Myo®, y=2F(t/o),
the explicit form of our function is
y=2F@tMY =), z>0.

What we need is the convex hull of the domain below the graph of this function.
Let us analyze the course of the function. Introduce z = tM,}/ “z~ 1/ Then

dy dy dz 2\ 2 Ita
de  dzdr 2f(2) ( aa:) T aM,te IO

which implies, by the condition imposed on f, that the function is convex for large
z (that is for small z) and thereafter it is concave (i.e. the graph of our function
is S-shaped). The function cannot be concave starting from the origin, because
this would mean that 2!t f(z) is monotone increasing, so f(z) > const- z2~1=% if
2z > 29, but then M, could not be finite.

04 1
y=2F (M)
03¢
ya ................................................... F=%
t=1
02+ =
/// o=2
0171
//
0 X, 1 X
Figure 1

From the origin, draw a tangent line to the positive part of the curve (so that
the tangent point on the curve is not the origin itself). Let the tangent point be
(Za,Ya)- Then the upper boundary of the convex hull is either the tangent line (if
x < x4) or the curve itself (if x > z,). The tangent point z, is determined by the

dy

equation —— = y, that is
de x
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Consequently, z, = M,t*z_, %, where z, satisfies equation (2), and further

Yo _ 2f(2a)%a _ 2f(20)25T*  2F(2q)2%
To  QTe  aMt® Myte

From these (3) and (4) will immediately follow.
When zf'(2)/f(2) is strictly decreasing, we have

oo )

Thus log (z1+0‘ f (z)) is concave, therefore f satisfies the conditions of Theorem 1.
Finally, since the positive roots of (2) correspond to the tangent points of an S-
shaped curve, they form a closed interval. In that interval F(z) = c¢- 2~ %, thus

2f'(2)/f(z) =—(1+a). O

Remarks.

1. This result remains valid for non-symmetric base distributions if in the formulae
2F (z) is replaced by F((—z)+1— F(z) and 2f(2) is replaced by f(—2)+ f(2). If we
suppose that the expectation of F' is 0, then the same holds for its scale mixtures,
thus our inequality remains centered.

2. We obtained the value of C, as an immediate corollary of (3). It is, however,
easy to see directly that

Co = Mia sup {t*F(t):t > 0}. (5)

Indeed, any scale mixture of F' can be obtained as the distribution of X = oY,
where ¢ is a positive random variable, independent of Y, which is of the base
distribution F'. First, let o be a constant. Then, by (5) we have

oM,

P(loY| > t) = 2F(t/o) < Cq .

When ¢ is a random variable, the same inequality holds for the conditional proba-
bility:

*M,
P(loY|>t|0) < Cq Uta =,
By taking expectations on both sides we obtain
E|oY|*

PloY|>1) < Ca =0

Since the right-hand side is a continuous function of ¢, we can also write P(|cY| > t)
on the left-hand side, as needed.

Finding the maximum in (5) leads to the equation (2), and finally we arrive at
(4). The convexity method, however, produces (3), which is better than (4) because
it provides a nontrivial upper bound even in the case where the right-hand side of
(4) exceeds 1.
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SPECIAL CASES

The family of symmetric distributions satisfying the conditions of Theorem 1 is
still sufficiently wide to have useful properties for modelling real life phenomena.
For instance, it is closed under taking powers, in the following sense. Let Y denote
a random variable with distribution F, and define Y’ = sign(Y) [Y|?, for some
B # 0. Let G and g denote the cdf and the density of Y, resp. If F satisfies the
conditions of Theorem 1, then so does G. Indeed, for positive z

_Ll_ 1 ARE)
9o) BB )

which is increasing by supposition (no matter what the sign of 3 is).

In the following four examples the particular choice of the base distribution leads
to widely known families of symmetric probability measures.

Ezample 1. Suppose the base distribution is uniform (—1,1). Then the condition
imposed on the density obviously holds, and the family of scale mixtures consists
of the symmetric unimodal distributions. Easy calculation yields

1 a a a
M =, =, C =( )
*Ta+41 Za a+1 @ a+1

Gauss discovered the special case Cy = (2/3)2.
Example 2. Suppose the base distribution is standard normal with density function

!
f(z) = (2n)~'2 exp(—22/2). Then z;(ij) = —22, which is indeed decreasing;
moreover P JF Fe)elt
2¢ a+1 2 Za)Zg
My==—=T(%5=), Ca=S0Gltotec. 6
NG ( 2 ) ¢ 20/2aT(241) ©

In particular, taking a = 2 yields 2o = 1.19 and Cy = f(22)z5 = 0.331..., so for
simplicity one might take Cy =~ 1/3.

Ezxample 3. Suppose the original distribution is Student’s t-distribution with v > 0
degrees of freedom, i.e.

1 T(4) 1
Vv T(5) (14 22/v)%

f(z) =

Then all moments of order o < v are finite. Our condition is satisfied, since

2f'(2) 22
=_ 1) =
is monotone decreasing. Here
L(43)T(*3%) a v
My =—2-"—-22y%?  in particular M, = . (7)
@ \/_ T (5) v—2
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Example 4. Let the base distribution be two-sided gamma, i.e.,

_ 1 v ||

where v is a nonnegative parameter. We obtain the Laplace distribution for v = 0,
zf'(2)
f(2)

I‘ 1 o ,,—
% . Particularly, in the Laplace case z, = a, and Cy, = % .

At the end of the paper there are tables displaying the Chebyshev constants in
the normal case for different values of a (Table 1), in the Student case for different
values of v and fixed @ = 2 (Table 2), in the Laplace case for different values of
a (Table 3), and in the two-sided gamma case for different values of v and fixed
a = 2 (Table 4).

and a bimodal density for v > 0. Here

= v — z is strictly decreasing, and

M, =

PROPERTIES OF THE CHEBYSHEV CONSTANTS

First we show that the Chebyshev constant C, = C,(F') is continuous both in
a and the base distribution F'.

Theorem 2. C, is a continuous function of o, and lirr%) Co = 1 for arbitrary base
a—
distribution.

Let us fix o and vary the base distribution. Suppose that F, — F weakly, with
M, (F,) converging to My(F), as n — co. Then Cy(F,) — Co(F).

Proof. Since M, — 2F(0) as a — 0, with arbitrary ¢ > 0 we have

1> limsup Co > lim inf Co > lim e*F(e)/F(0) = F(e)/F(0),
a—

a—0 a—0
which can be arbitrarily close to 1 if € is small enough. Further, since
sup {2t*F(t) : 0 <t <b} <b* sup{2t°F(t): B<t} < / |t|*dF (t),
B
we have

sup {2t*F(t): t > 0} = sup {2¢t*F(t) : b <t < B}

if b > 0 is sufficiently small and B > b is large enough. Now, continuity of a — C,,
is implied by that of M, and the following facts.

(o] o0
lim 5°h = 5%, Lim [ ||*ThdE() = / | dF(8),
h—0 h—0 Jp B

’Einhsup {2¢*T"F(t): b<t < B} =sup{2t*F(t): b< t < B}.
—

Next, suppose that F,, - F weakly. Let ¢,, denote the Levy distance of F;, and F.
If §,, < b <t < B, then we have

2t°Fp(t) < 2t*[F(t — 6n) 4+ 05) < ( )a sup {2t*F(t) : t > 0} + 2B,

b
b—d,
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thus
limsup sup {2¢*F,(t) : b <t < B} <sup{2t*F(t):t > 0}.

n—o0

On the other hand,

limsup sup {2t*F,(t): 0 <t <b} <b*,

n—0o00
o0
limsup sup {2t*F,(t) : B <t} < / [t|*dF(t),
n—o00 B

hence lim sup C(F,,) < Co(F).

n—oo

For the opposite direction, let t,, € [b, B] such that
2t2F (t,) > sup {2t*F(t) : t > 0} — 6.
Then we have

2(t—6,)*Fp(t—6,) t—6n)*[F(t) — 6n] >

> 2
Z(b On

)" sup {24°F (1) s £ > 0} - 6, — 2B°6,,
consequently, liminf Cy (F,) > Co(F). O
n—oo

Let us denote the constant corresponding to the Student distribution with v
degrees of freedom by C,(v), and the one corresponding to the normal distribution
by Cy(00).

Theorem 3. For fized & > 0, the function Cy : (a,+00] — R is continuous,
monotone increasing, and

lim Ca®) _ @22 ()

vaa V— O

For fized v € (0,00], the function 0 < a < v, a + Cy(v) is monotone decreasing,
and

lim Calv) _ v A2 iy < oo, 9)
a—=v VU —Q
ILm aCy(00) =+/2/m. (10)

Proof. Let a be fixed. Monotonicity of C,(.) is implied by the observation that the
Student distribution with v degrees of freedom is a scale mixture of the one with y
degrees of freedom if v < p; and further they are all scale mixtures of the standard
normal distribution. Indeed, let X, be Student-distributed with p degrees of

freedom, and Y be independent of it with Beta(%, £5%) distribution. Then the

distribution of X, = X,/v/uY is Student with v degrees of freedom. Similarly, if
X is standard normal, and Y is independent of it and G’amma(%, %) distributed,
then the distribution of X,, = X,1/v/Y is again Student with v degrees of freedom.
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Continuity of Cy(.) is a corollary to Theorem 2, because the parametrization of
the family of Student distributions is weakly continuous, and the Student distribu-
tion is asymptotically standard normal as v — oo.

For the asymptotic analysis of Cy,(v) let us start from the formula

F.(2) 2NF L e
=+t 1+ dy. 11
fy(z) ( + I/) /( + y) Yy ( )
z
By introducing # (1 + Zz)_l and s (1 + yz)_l ith which 2 v(1-1)
n = -, = - A\ w =
y intr g — ) t

and 2dy = s73/2(1 — 5)~'/2\/u ds, we get

Fy(2) _ VY sy
2

70 s"/2*1(1 - s)*l/zds

t o0
t (1/+1)/2/Z ( 1/2> shtv/2-1 g
0

k=0

o .

L h—1/2
2k ’

Il
S
I M8

1/2
where uy, = (=1)* ( /
other hand,

N——

+
= ( ) particularly, ug = 1, u; = 1/2. On the

z_\/—z ( tk 1/2 _ \/_Zl_gk k1/2

hence equation (2) is read as

(s gt -0
%+v  al@k-1))F T
k=0
1 +l)£+o(t)_0 hich implies that
24+v a/2 v P
2+a)(v-—a l+a 1
RSl S th ~ 5T
a(l +a) as v | @, thus zo ~ o 24+a Jr—a

The proof of (8) can be completed by plugging this and (7) into (4).

Now, let v be fixed. Let us deal with the problem of monotonicity of Chebyshev
constants in the general case of arbitrary symmetric base distribution. We start
from the formula

1 1
For small positive t we obtain (; — E) + <

v—o>a=>1t—0. Hencet ~

log C,, = log2 + alog zo + log F(z4) — log M,

(see (5)). Let us differentiate with respect to a.

r_ ﬁ 1 f(za)
(log Ca)' =log za + - (2a) F)

(2a)' — (log Ma)' = log 7o — (log Ma,)".
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If this is negative, C, is decreasing.

In the case of standard normal base distribution (v = 0o) we have F(z) < f(z)/z,
hence z, < /. By (6) it suffices to show that £ loga < $log2+ ;¢ (2), where
¢ denotes the digamma function (i.e., the derivative of logI'). We show that

P(t) <logt < @b(% + t) t>0. (12)

1 1 1
This holds for large values of ¢, because ¥ (t) = logt — % " o + O(—), as

t — oo; hence

1 1 1
= =1 — 1.
¢(2+t> Ogt+24t2+0(t2>
On the other hand, by the monotonicity and convexity of the function = — z=2 we

have
n+1+t

(i) =y 1 3 de _1 S~ 1 _
¢(§+t)_§(n+t+1/2)2<2_‘; /t mz_t<z_:0(n+t)2_¢(t)'
n= n= ,n_,'_ n=

Consequently, ¢(% +t) —logt and logt — ¥(t) are decreasing, and therefore they
are positive for ¢ > 0. Thus log z, < (log M,)’, indeed.

2f(2)

Suppose that o — oo. Since ﬁ =22+ 1+0(1) as 2 — 0o, we have z, =
z
va—=1(1+o(a™')). Therefore
9 a+1 o ) -1 (a+1)/2 9 —-1/2 ,—(a—1)/2
fCy o 2GR | 2am eI gr e

20/2T (2kL) r=1/2 9a/2 (ozT—l)O‘/2 e—(a—1)/2 1/2
as claimed in (10).
Let us turn to the case of Student base distribution (v < 00). We clearly have

(1 N %)*(u—kl)/Z - (1 N y_12) (1 N %)f(uﬂ)/z _ diy (—i (1 N y_;)(ul)/2) ‘

Integrate this to obtain

7(1 + %)_(V+1)/2dy < % (1 N ?)_(V_l)ﬂ_

z

By (11) it follows that
2

F,,(z)<1(1+z)_1 1

z2f,(z) 22 v/ 22 v

which implies z, < re By (7) it is sufficient to prove that
V—a

1 1 a+1 vV—a
i(logl/-i-loga—log(l/—a))<§(¢( 5 )—'gb( 5 )-i—logl/),

which is an immediate corollary of (12).
Finally, the proof of (8) yields (9), too. O

Next, let Cy(v) denote the Chebyshev constant corresponding to the two-sided
gamma base distribution with parameter v.
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Theorem 4. For fized a > 0, the function Cy, : [0,00) = R is continuous, mono-
tone increasing, and lim Cu(v) = 1. For fized v > 0, the function 0 < a — Cy(v)
V—00

is monotone decreasing, and

lim VaCy() = \/%7 (13)

Proof. Let a be fixed and apply the idea of the proof of Theorem 3. Monotonicity
of C,(.) is implied again by the observation that the Gamma(v, 1) distribution is a
scale mixture of Gamma(p, 1) if v < p. To see this observe that the distribution of
X,Y is Gamma(v, 1), provided that X, and Y are independent with distributions
Gamma(u,1) and Beta(v, p — v), resp.

Continuity of Cy(.) follows from Theorem 2. Distributions that are scale trans-
forms of each other obviously generate the same family of scale mixtures, thus the
base cdf F,(z) can be replaced by F, (vz). This latter converges weakly, as v — oo,
to the discrete distribution that puts weight 1/2 to each of the values £1; and all
of its absolute moments tend to 1, too. Hence C,(v) converges to the correspond-
ing Chebyshev constant of the limit distribution, which can be computed easily by
using (5). The result is 1, showing that in the family of all symmetric distribution
the classical Chebyshev inequality cannot be improved.

Now, let v be fixed. For the monotonicity of C,(v) we show that log z, < (M,)'.
Let z > v; then by substituting y = (1 + s)z we get

oo

F(z) 1 [(y\ i 1
(2) _ —/(y) e Vi dy = /(1 +s)’e *ds < /e*(z*”)s ds =
0

z2f(z) =z z z2—v’
z 0
from which z, < v+ « follows. Hence logz, <log(v +a) < (v +a+1) = (M,),
by (12).
On the other hand, from the line above it can be easily seen that z, is an
increasing function of v for fixed a. Thus z, > . Hence, for fixed v, as a — oo,

o 22142 f(24) _ 2o Totve 2a (a + v)ttotve—(aty) 1
“ aM, al(l+a+v) = al(l+a+v) 2o’
and also
c a¥tve=a 1 0

a> ~ .
“Tl4+a+v) 2ra

OPEN PROBLEMS

1. What conditions guarantee that the Chebyshev constants C,, decrease as a in-
creases? Are the conditions of our Theorem 1 sufficient for this?

In this respect notice the following.

(i) If the base distribution has finite support, then C,, does not decrease for large
a. Indeed, let 0 < 7 < --- < x, be the sequence of positive discontinuity points of
F, with jumps (probabilities) py, ..., pk, resp. If ¢ = p1 + --- + p, then

max{gzf:1<i<k}

Cy =
k
Zi:1 pix
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When « is small, the maximum in the numerator is attained for ¢ = 1, thus C,
decreases. On the other hand, for large values of a the numerator equals py z%,
hence C, increases eventually and converges to 1 as a@ — co. From Theorem 2 it is
clear that not even an arbitrarily smooth density can guarantee the monotonicity
of C,.

(ii) Let Y denote a random variable with distribution F. If F' belongs to the
multiplicative class L, then the cdf of Y’ = sign(Y) [Y|?, 3 > 1, is a scale mixture
of the cdf of Y. Since Co(Y') = Cop(Y) by (5), it follows that the Chebyshev
constants decrease as « increases.

2. Find conditions for Cq | 0 as & / amax = sup{a : My < oo}. According
to (i) above, distributions with finite support do not belong to this class. On the
other hand smoothness itself is not sufficient either; not even when amax = co. In

Example 1 C, = (QLH)Q 1 1/e, and NOT to 0, as a — 0o.

TABLES OF CHEBYSHEV CONSTANTS

«o Za M, Cy o Za M, C,
0.5 | 0.452 | 0.67598 | 0.53255 1.7 | 1.073 | 0.94374 | 0.35235
0.6 | 0.519 | 0.70192 | 0.50372 1.8 | 1.113 | 0.96285 | 0.34490
0.7 | 0.582 | 0.72701 | 0.47973 1.9 | 1.153 | 0.98159 | 0.33795
0.8 | 0.642 | 0.75133 | 0.45930 2.0 | 1.191 | 1.00000 | 0.33143
0.9 | 0.698 | 0.77493 | 0.44160 3.0 | 1.528 | 1.16858 | 0.28284
1.0 | 0.752 | 0.79788 | 0.42605 4.0 | 1.812 | 1.31607 | 0.25149
1.1 | 0.803 | 0.82023 | 0.41223 5.0 | 2.060 | 1.44879 | 0.22897
1.2 | 0.852 | 0.84201 | 0.39983 6.0 | 2.284 | 1.57042 | 0.21173
1.3 | 0.899 | 0.86328 | 0.38861 7.0 | 2.489 | 1.68333 | 0.19795
1.4 | 0.945 | 0.88405 | 0.37838 8.0 | 2.679 | 1.78916 | 0.18659
1.5 | 0.989 | 0.90424 | 0.36908 9.0 | 2.857 | 1.88909 | 0.17702
1.6 | 1.032 | 0.92426 | 0.36035 | |10.0 | 3.025 | 1.98401 | 0.16880

Table 1. Normal mixtures

v Z92 Mz C2 v z9 M2 CQ

3 | 2.101 | 1.73205 | 0.18605 15 | 1.283 | 1.07417 | 0.31237
4 | 1.707 | 1.41421 | 0.23750 16 | 1.277 | 1.06904 | 0.31366
5 | 1.554 | 1.29099 | 0.26211 17 | 1.271 | 1.06458 | 0.31479
6

7

8

1.472 | 1.22474 | 0.27654 18 | 1.267 | 1.06066 | 0.31578
1.420 | 1.18322 | 0.28601 19 | 1.262 | 1.05719 | 0.31667
1.384 | 1.15470 | 0.29269 20 | 1.258 | 1.05409 | 0.31745
9 | 1.358 | 1.13389 | 0.29767 30 | 1.235 | 1.03510 | 0.32231
10 | 1.338 | 1.11803 | 0.30151 40 | 1.223 | 1.02598 | 0.32467
11 | 1.323 | 1.10554 | 0.30457 50 | 1.216 | 1.02062 | 0.32605
12 | 1.310 | 1.09545 | 0.30707 75 | 1.208 | 1.01361 | 0.32788
13 | 1.300 | 1.08711 | 0.30914 | {100 | 1.203 | 1.01015 | 0.32878
14 | 1.291 | 1.08012 | 0.31088 oo | 1.191 | 1.00000 | 0.33143

Table 2. Student mixtures, v degrees of freedom, o = 2
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a = 2, M, C, a = 2z, M, C,
0.5 0.88623 | 0.48394 1.7 1.54469 | 0.29149
0.6 0.89351 | 0.45208 1.8 1.67649 | 0.28403
0.7 0.90864 | 0.42577 1.9 1.82736 | 0.27711

0.8 0.93138 | 0.40356 2.0 2 0.27067
0.9 0.96177 | 0.38449 3.0 6 0.22404
1.0 1.00000 | 0.36788 4.0 24 0.19537
1.1 1.04649 | 0.35324 5.0 120 0.17547
1.2 1.10180 | 0.34022 6.0 720 0.16062
1.3 1.16671 | 0.32853 7.0 5040 0.14900
14 1.24217 | 0.31797 8.0 40320 | 0.13959

1.5 1.32934 | 0.30838 9.0 362880 | 0.13176
1.6 1.42962 | 0.29957 10.0 3628800 | 0.12511

Table 3. Laplace mixtures

z2 M2 02 v z2 M2 02
2.732 6 0.30218 13 | 12.233 210 0.46798
3.480 12 | 0.32755 14 | 13.057 240 0.47544
4.240 20 | 0.34880 15 | 13.884 272 0.48247
5.010 30 | 0.36708 16 | 14.715 306 0.48911
5.790 42 | 0.38311 17 | 15.548 342 0.49540
6.576 56 | 0.39737 18 | 16.384 380 0.50138
7.369 72 | 0.41021 19 | 17.222 420 0.50706
8.168 90 | 0.42188 20 | 18.063 462 0.51248
8.972 | 110 | 0.43256 30 | 26.575 992 0.55598
9.781 | 132 | 0.44240 40 | 35.233 | 1722 | 0.58705
10.595 | 156 | 0.45153 50 | 43.996 | 2652 | 0.61094
11.412 | 182 | 0.46003 | |100 | 88.752 | 10302 | 0.68217

— =
NE S ©w-1o ok Wi Y

Table 4. Two-sided gamma mixtures with parameter v, for a = 2

REFERENCES

I. J. Bienaymé, Considérations a dppui de la découverte de Laplace sur la loi
de probabilité dans la méthode des moindres carrés, C. R. Acad. Sci., Paris 37
(1853), 309-324, reprinted immediately preceding [3] in Liouville’s J. Math.
Pures Appl. 12/2 (1867), 158-176.

. N. H. Bingham and R. Kiesel, Semi-parametric modelling in finance: theoretical

foundations, Quant. Finance vol 2 (2002), 241-250.

. P. L. Chebyshev, Des valeurs moyennes, Liouville’s J. Math. Pures Appl. 12/2

(1867), 177184, translated into French by N. Hanikov from Russian published
in Mat. Sbornik 2/2 (1867), 1-9.

. V. Csiszar and T. F. Méri, The convezity method of proving moment-type in-

equalities, Statist. Probab. Lett. 66 (2004), 303-313.

. A. DasGupta, Best constants in Chebyshev inequalities with various applica-

tions, Metrika 51/3 (2000), 185-200.



CHEBYSHEV-TYPE INEQUALITIES 13

6. S. W. Dharmadhikari and K. Joag-Dev, The Gauss—Tchebysheff inequality for
unimodal distributions, Theory of Probability and Its Applications 30 (1985),
867-887.

7. C. F. Gauss, Theoria Combinationis Observationum Erroribus Minimus Obnozx-
iae, Gottingen, 1821-1823.

8. C. C. Heyde, A risky asset model with strong dependence through fractal activity
time, J. Appl. Probab. 36 (1999), 1234-1239.

9. C. C. Heyde and E. Seneta, I. J. Bienaymé, Statistical Theory Anticipated,
Springer, New York, 1977.

10. C. C. Heyde and E. Seneta (eds.), Statisticians of the centuries, Springer, New
York, 2001.

11. T. F. Méri and G. J. Székely, A note on the background of several Bonferroni—
Galambos type inequalities, J. Appl. Probab. 22 (1985), 836-843.

12. T. M. Sellke, Generalized Gauss—Chebyshev inequalities for unimodal distribu-
tions, Metrika 43/2 (1996), 107-121.

13. T. M. Sellke and S. H. Sellke, Chebyshev inequalities for unimodal distributions,
Amer. Statist. 51/1 (1997), 34-40.

L2DEPARTMENT OF PROBABILITY THEORY AND STATISTICS,
LORAND EOTVOS UNIVERSITY,

PAzMANY P. 5. 1/C,

H-1117 BUDAPEST, HUNGARY

3DEPARTMENT OF MATHEMATICS AND STATISTICS,

BOWLING GREEN STATE UNIVERSITY,

BowLING GREEN, OH 43403-0221 USA

E-mail address: villo@ludens.elte.hu, moritamas@ludens.elte.hu,
gabors@bgnet .bgsu.edu



