
Independen
e and AtomsT. F. M�ori and G�abor J. Sz�ekelyAbstra
tSuppose an in�nite sequen
e of independent events with probabili-ties p1; p2; p3; : : : is given in a probability spa
e with at least one atom.Then P1n=1minfpn; 1 � png < 1. On the other hand, if this 
ondi-tion holds then we 
an always 
onstru
t a purely atomi
 probabilityspa
e with an in�nite sequen
e of independent events with probabil-ities p1; p2; p3; : : :. We also prove that if the range of a probabilitymeasure P 
ontains an interval [0; "℄, " > 0, then there are in�nitelymany independent events in this probability spa
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tion and ResultsThe notion of independen
e is fundamental in probability theory. Re
entlyit has been proved ([1℄) that two probability measures P and Q on a �-�eldA, where P or Q is atomless, 
oin
ide if and only if P (AB) = P (A)P (B) isequivalent to Q(AB) = Q(A)Q(B), A;B 2 A.Re
all that an event A 2 A is an atom if P (A) > 0, and B � A, P (B) <P (A) imply P (B) = 0. Purely atomi
 means that there is a sequen
e ofatoms su
h that the sum of their probabilities is 1.If the probability measure is purely atomi
 then it is 
ertainly possiblethat there are no (nontrivial = not empty and not the whole spa
e) inde-pendent events at all. The following example is a suÆ
ient 
ondition forthat. If the probability spa
e is purely atomi
 then without loss of generalitywe 
an suppose that the underlying probability spa
e is fIN0;A; Pg whereIN0 = f0; 1; 2; : : :g, A is the set of all subsets of IN0, and P is de�ned by anon-in
reasing sequen
e an = P (n), n 2 IN0.Example 1.1 If an+1 � a2n holds for all n 2 IN0 then there are no (nontriv-ial) independent events in this probability spa
e.1



For n > 1 our 
ondition implies that the tail probabilitiestn = an + an+1 + : : : < an=(1� an) < an=an�1 � an�1 � a2n�2:Now if A and B are two arbitrary nonempty events and the smallest elementof A, B and AB are k, m and n, respe
tively, then we 
an suppose 0 <k � m � n. (If A or B 
ontains 0 then their 
omplements do not, and the
omplements are also independent, so we 
an then swit
h from A or B totheir 
omplements.)If m = n thenP (A)P (B) � tktm < (1� a0)am=(1� am) < am � P (AB):If m < n thenP (AB) � tn = an + an+1 + tn+2 < a2n�1 + 2a2n < (an�1 + an)2< P (A)P (B):Theorem 1.1 If the probability spa
e 
ontains at least one atom and in�-nitely many independent events with probabilities p1; p2; p3; : : :, then1Xn=1minfpn; 1� png <1:Conversely, if this sum is �nite, then there exist a purely atomi
 probabilityspa
e and an in�nite sequen
e of independent events in it with probabilitiesp1; p2; p3; : : :.Remark 1.1 The (easier) 'dire
t' part is an exer
ise (Ex
er
ise 4.1, p.67)in Billingsley (1995).Remark 1.2 In a purely atomi
 probability spa
e there is no in�nite se-quen
e of independent events fBn; n = 1; 2; : : :g whose probabilities arebounded away from 0 and 1, that is, 0 < d < P (Bn) < 1 � d < 1 
an-not hold.It is enough to refer to the fa
t that 
onvergen
e in probability and a.s.
onvergen
e are equivalent if (and only if) P is purely atomi
 (see Thm 1.5.2in [3℄). But the indi
ator fun
tions of the of events B1, B1, B1B2, B1B2,2



B1B2, B1B2; : : : tends to 0 in probability (the probability of the interse
tionof k events from fBng or fBng is less than (1� d)k) but the 
onvergen
e isnot a.s.A range of a purely atomi
 probability measure 
an easily be the whole[0; 1℄, e.g. if the probability of the n-th atom an = 1=2n+1.Theorem 1.2 If the range fP (A) : A 2 Ag of a probability measure P
ontains the whole interval [0; 1℄ or at least if the range 
ontains an arbitrarysmall interval [0; "℄; " > 0; then there are in�nitely many independent eventsin the underlying probability spa
e.Remark 1.3 It is very easy to see that if the range is [0; 1℄ then we alwayshave two nontrivial independent events.To see this 
hoose A = f0; 1; 2; : : : ; ng and AB = fng. Then by the indepen-den
e of A and B we have P (B n A) = P (AB)(1=P (A) � 1). Be
ause therange of P is [0; 1℄, we surely have an event C with probability P (B n A).If n is big enough, e.g. if P (A) > 1=2, then P (C) < an, hen
e C does notinterse
t f0; 1; 2; : : : ; ng. Finally, set B = AB [ C.This argument does not seem to extend for more than two events. Weneed an entirely di�erent approa
h in the proof of Theorem 1.1 below.2 ProofsProof of Theorem 1.1.If B1; B2; : : : are independent events and A is an atom, then withoutloss of generality we 
an suppose that all of the events B1; B2; : : : 
ontainA. (If this were not the 
ase for some of them, we 
an repla
e them bytheir 
omplements, they remain independent.) Denote the probabilities ofA;B1; B2; : : : by a; p1; p2; : : :, resp.Then for every n 2 IN0a � P (B1B2 : : : Bn) = P (B1)P (B2) : : : P (Bn) = p1p2 : : : pn< expf�(1� p1)g � � � expf�(1� pn)g;thus (1� p1) + (1� p2) + : : : � log(1=a), and so this is �nite.Conversely, suppose that this sum is �nite. By the Borel{Cantelli lemmawe have that at most �nitely many Bn 
an o

ur a.s. Thus, with probability3



1, there are only 
ountably many interse
tions in whi
h every event Bn or its
omplement o

urs. These disjoint interse
tions 
an be 
onsidered as atomsof the �-�eld generated by B1; B2; : : : (for more details see below): they 
overthe whole spa
e.Remark 2.1 The argument above shows that in a probability spa
e with atleast one atom there 
annot be more than 
ountably many independent events.As we have seen without the loss of generality we 
an assume that all sup-posedly independent events 
ontain the same atom. Thus the sum of theprobabilities of their 
omplements is uniformly bounded hen
e for every pos-itive " there are only �nitely many events with probability at most 1 � ".This implies our 
laim if " > 0 tends to 0 on a 
ountable set.From the proof of Theorem 1.1 we 
an see that there is a simple relationbetween the probabilities p1; p2; : : : of our independent events and the prob-abilities of the atoms generated by B1; B2; : : : . Denote the probabilities ofthese atoms by a0; a1; a2; : : :. If we suppose that P1n=1(1 � pn) < 1, then
 := Q1n=0 pn <1. Now let S be a �nite subset of f1; 2; : : :g. Then the atomsof the �-�eld generated by B1; B2; : : : are AS = Qi=2S BiQi2S Bi. This atom
orresponds in a unique way to the nonnegative integer n(S) = Pi2S 2i. Nowit is 
lear that the probabilities of the atoms are the followingan = an(S) = P (AS) = 
Yi2S 1� pipi :On the other hand, Bi = [S:i=2SAS:Example 2.1 Choose pi su
h that 1�pipi = 1=22i, that is, pi = 1=(1 + 2�2i).Then one 
an easily 
ompute that Qi2S 1�pipi = 1=2n where n = n(S), and
 = 1=2. Hen
e we have a very simple purely atomi
 probability spa
e wherethe probability of the n-th atom is an = 1=2n+1. The atom n = n(S) is
ontained in the event Bi i� 2i is not there in the binary expansion of n, thatis, Bi = fm : m � 1; 2; : : : ; 2i (mod 2i+1)g are mutually independent.Proof of Theorem 1.2 4



Using the arguments above we 
an we easily 
he
k if a purely dis
reteprobability spa
e where the probabilities of atoms are a0 � a1 � a2 � : : :are given, is generated by a sequen
e of independent events. If the followingpro
ess never ends then we obviously have an in�nite sequen
e of independentevents that generates our probability spa
e, otherwise we do not have.The formula for an above shows that the maximum probability of atoms(a0) 
orresponds to 
ase when set S is empty. Then a0 = 
. Delete A;. Usingthe notation bi = (1 � pi)=pi the next biggest probability of the remainingatoms is 
b1. Delete the atom with this probability (if there are more thanone atoms with this probability, then delete one of them). The next biggestprobability is 
b2. Delete the 
orresponding atom. If there is an atom withprobability 
b1b2 then we delete it, otherwise stop and say that there our�-�eld is not generated by independent events. The next biggest probabilityof atoms is 
b3. Delete the 
orresponding atom. Delete also the atoms withprobabilities 
b1b3; 
b2b3; 
b1b2b3. If there are no atoms with any of theseprobabilities, we stop. The next biggest probability of atoms is 
b4, et
.The algorithm above is a ne
essary and suÆ
ient 
riterion for a purelyatomi
 �-�eld to be generated by an in�nite sequen
e of independent events.Though it is hard to apply, but using this idea we 
an get ni
e suÆ
ient
onditions, one of them is our Theorem 1.2.If the range of a probability measure is the whole interval [0; 1℄ or at leastit 
ontains an interval [0; "℄, then the above algorithm shows that there alwaysexists in�nitely many independent events in the spa
e. More pre
isely, if theprobabilities p1 � p2 � : : : are given in a su
h a way that 
 := Q1i=1 pi > 0and 
 � 1�", then one 
an always �nd independent events with probabilitiesp1; p2; : : :.We just need the following simple modi�
ation of the algorithm above.Instead of looking for an atom AS, S 6= ;, with probability 
Qi2S bi, itsuÆ
es to �nd an event in A, disjoint from all previously 
hosen events, withthe pres
ribed probability. This is always possible sin
e the probability inquestion is small enough:XS 6=;P (AS) = 
 1Yi=1(1 + bi)� 1! = 1� 
 � ";thus in ea
h step the range of the probability measure restri
ted to the 
om-plement of all previously 
hosen events still 
ontains a suÆ
iently large in-terval. Finally, let A; = QS 6=;AS and Bi = SS:i=2S AS.5
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