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Abstract

Suppose an infinite sequence of independent events with probabili-
ties p1,p2,Pp3, - .- is given in a probability space with at least one atom.
Then Y02, min{p,,1 — p,} < co. On the other hand, if this condi-
tion holds then we can always construct a purely atomic probability
space with an infinite sequence of independent events with probabil-
ities pi1,p2,ps3,.... We also prove that if the range of a probability
measure P contains an interval [0,¢], £ > 0, then there are infinitely
many independent events in this probability space.
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1 Introduction and Results

The notion of independence is fundamental in probability theory. Recently
it has been proved ([1]) that two probability measures P and @) on a o-field
A, where P or () is atomless, coincide if and only if P(AB) = P(A)P(B) is
equivalent to Q(AB) = Q(A)Q(B), A, B € A.

Recall that an event A € A is an atom if P(A) >0, and B C A, P(B) <
P(A) imply P(B) = 0. Purely atomic means that there is a sequence of
atoms such that the sum of their probabilities is 1.

If the probability measure is purely atomic then it is certainly possible
that there are no (nontrivial = not empty and not the whole space) inde-
pendent events at all. The following example is a sufficient condition for
that. If the probability space is purely atomic then without loss of generality
we can suppose that the underlying probability space is {INy, .4, P} where
Ny ={0,1,2,...}, A is the set of all subsets of INy, and P is defined by a
non-increasing sequence a, = P(n), n € INy.

Example 1.1 If a,., < a2 holds for all n € Ny then there are no (nontriv-
ial) independent events in this probability space.



For n > 1 our condition implies that the tail probabilities
ty = ap + Gpp1 + ... < an/(1—ap) < ap/an_1 < ap_y < a’_,.

Now if A and B are two arbitrary nonempty events and the smallest element
of A, B and AB are k, m and n, respectively, then we can suppose 0 <
k <m <mn. (If Aor B contains 0 then their complements do not, and the
complements are also independent, so we can then switch from A or B to
their complements.)

If m = n then

P(A)P(B) < tytym < (1 —ap)an /(1 —ay) < a, < P(AB).
If m < n then

P(AB) < tp=an+ anp1 +tnse < a2 i+ 202 < (anq + ay)?
< P(A)P(B).

Theorem 1.1 If the probability space contains at least one atom and infi-
nitely many independent events with probabilities py, ps, ps3, . . ., then

(o0}
Z min{p,, 1 — p,} < oc.
n=1

Conversely, if this sum s finite, then there exist a purely atomic probability
space and an infinite sequence of independent events in it with probabilities

P1,P2,DP3, - - -

Remark 1.1 The (easier) ’direct’ part is an exercise (Excercise 4.1, p.67)
in Billingsley (1995).

Remark 1.2 In a purely atomic probability space there is no infinite se-
quence of independent events {B,, n = 1,2,...} whose probabilities are
bounded away from 0 and 1, that is, 0 < d < P(B,) < 1—d < 1 can-
not hold.

It is enough to refer to the fact that convergence in probability and a.s.
convergence are equivalent if (and only if) P is purely atomic (see Thm 1.5.2
in [3]). But the indicator functions of the of events By, B, BBy, BB,



BBy, B1B,, ... tends to 0 in probability (the probability of the intersection
of k events from {B,} or {B,} is less than (1 — d)*) but the convergence is
not a.s.

A range of a purely atomic probability measure can easily be the whole
[0, 1], e.g. if the probability of the n-th atom a, = 1/2"*!.

Theorem 1.2 If the range {P(A) : A € A} of a probability measure P
contains the whole interval [0, 1] or at least if the range contains an arbitrary
small interval [0, €], € > 0, then there are infinitely many independent events
in the underlying probability space.

Remark 1.3 It is very easy to see that if the range is [0, 1] then we always
have two nontrivial independent events.

To see this choose A = {0,1,2,...,n} and AB = {n}. Then by the indepen-
dence of A and B we have P(B\ A) = P(AB)(1/P(A) — 1). Because the
range of P is [0, 1], we surely have an event C' with probability P(B \ A).
If n is big enough, e.g. if P(A) > 1/2, then P(C) < ay,, hence C' does not
intersect {0,1,2,...,n}. Finally, set B=ABUC.

This argument does not seem to extend for more than two events. We
need an entirely different approach in the proof of Theorem 1.1 below.

2 Proofs
Proof of Theorem 1.1.

If By, Bs,... are independent events and A is an atom, then without
loss of generality we can suppose that all of the events By, B,,... contain

A. (If this were not the case for some of them, we can replace them by
their complements, they remain independent.) Denote the probabilities of
A, By, Bs,... by a,pi,pa, ..., resp.

Then for every n € IN,

< exp{=(1=pi)}---exp{—(1 = pa)},
thus (1 —py) + (1 —p2) + ... <log(1/a), and so this is finite.

Conversely, suppose that this sum is finite. By the Borel-Cantelli lemma,
we have that at most finitely many B,, can occur a.s. Thus, with probability

3



1, there are only countably many intersections in which every event B,, or its
complement occurs. These disjoint intersections can be considered as atoms
of the o-field generated by By, Bs, ... (for more details see below): they cover
the whole space.

Remark 2.1 The argument above shows that in a probability space with at
least one atom there cannot be more than countably many independent events.

As we have seen without the loss of generality we can assume that all sup-
posedly independent events contain the same atom. Thus the sum of the
probabilities of their complements is uniformly bounded hence for every pos-
itive £ there are only finitely many events with probability at most 1 — .
This implies our claim if £ > 0 tends to 0 on a countable set.

From the proof of Theorem 1.1 we can see that there is a simple relation
between the probabilities p{, po, ... of our independent events and the prob-
abilities of the atoms generated by Bj, Bs,... . Denote the probabilities of
these atoms by ag,ay, az,.... If we suppose that >°° (1 — p,) < oo, then
c: =TI pn < 00. Now let S be a finite subset of {1,2,...}. Then the atoms
of the o-field generated by By, Bs,... are Ag = [Tigs Billics B,. This atom
corresponds in a unique way to the nonnegative integer n(S) = ;.4 2°. Now
it is clear that the probabilities of the atoms are the following

1—pi
an:an(g):P(AS):cH 3 .
1€S v

On the other hand,

Bi: U As.
S¢S

Example 2.1 Choose p; such that % = 1/2%, that is, p; = 1/(1 +27%).
Then one can easily compute that [];cs 1;’” = 1/2" where n = n(S), and
¢ =1/2. Hence we have a very simple purely atomic probability space where
the probability of the n-th atom is a, = 1/2""L. The atom n = n(S) is
contained in the event B; iff 2' is not there in the binary expansion of n, that
is, Bi={m:m=1,2,...,2" (mod 2°"')} are mutually independent.

Proof of Theorem 1.2



Using the arguments above we can we easily check if a purely discrete
probability space where the probabilities of atoms are ag > ay > ay > ...
are given, is generated by a sequence of independent events. If the following
process never ends then we obviously have an infinite sequence of independent
events that generates our probability space, otherwise we do not have.

The formula for a,, above shows that the maximum probability of atoms
(ag) corresponds to case when set S is empty. Then ay = ¢. Delete Ay. Using
the notation b; = (1 — p;)/p; the next biggest probability of the remaining
atoms is cb;. Delete the atom with this probability (if there are more than
one atoms with this probability, then delete one of them). The next biggest
probability is cb,. Delete the corresponding atom. If there is an atom with
probability cb;by then we delete it, otherwise stop and say that there our
o-field is not generated by independent events. The next biggest probability
of atoms is cbs. Delete the corresponding atom. Delete also the atoms with
probabilities cbibs, cbabs, cb1bobs. If there are no atoms with any of these
probabilities, we stop. The next biggest probability of atoms is cby, etc.

The algorithm above is a necessary and sufficient criterion for a purely
atomic o-field to be generated by an infinite sequence of independent events.
Though it is hard to apply, but using this idea we can get nice sufficient
conditions, one of them is our Theorem 1.2.

If the range of a probability measure is the whole interval [0, 1] or at least
it contains an interval [0, €], then the above algorithm shows that there always
exists infinitely many independent events in the space. More precisely, if the
probabilities p; > p, > ... are given in a such a way that ¢ :=[[;2;p; > 0
and ¢ > 1—¢, then one can always find independent events with probabilities
pP1,P2, - -

We just need the following simple modification of the algorithm above.
Instead of looking for an atom Ag, S # (), with probability ¢[T;cq b;, it
suffices to find an event in A, disjoint from all previously chosen events, with
the prescribed probability. This is always possible since the probability in
question is small enough:

ZP(As):c<ﬁ(1+bi)—1>:1_cg5,

S#0 i=1
thus in each step the range of the probability measure restricted to the com-

plement of all previously chosen events still contains a sufficiently large in-
terval. Finally, let Ay = [Tsp As and B; = Ug.i¢g As-
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